1,054 research outputs found

    A Broadband UHF Tag Antenna For Near-Field and Far-Field RFID Communications

    Get PDF
    The paper deals with the design of passive broadband tag antenna for Ultra-High Frequency (UHF) band. The antenna is intended for both near and far fields Radio Frequency Identification (RFID) applications. The meander dipole tag antenna geometry modification is designed for frequency bandwidth increasing. The measured bandwidth of the proposed broadband Tag antenna is more than 140 MHz (820–960 MHz), which can cover the entire UHF RFID band. A comparison between chip impedance of datasheet and the measured chip impedance has been used in our simulations. The proposed progressive meandered antenna structure, with an overall size of 77 mm × 14 mm × 0.787 mm, produces strong and uniform magnetic field distribution in the near-field zone. The antenna impedance is matched to common UHF chips in market simply by tuning its capacitive and inductive values since a perfect matching is required in the antenna design in order to enhance the near and the far field communications. Measurements confirm that the designed antenna exhibits good performance of Tag identification for both near-field and far-field UHF RFID applications

    Canopy structure and radiation regime in grapevine. 1. Spatial and angular distribution of leaf area in two canopy systems

    Get PDF
    Grapevine canopies are discontinuous and spatially heterogeneous. Thus, their geometrical structure is difficult to characterize. A method based on a three-dimensional discretion of the volume occupied by foliage elements was used to assess spatial and angular distribution of leaf area. The method was applied to two canopy systems (Open Lyre and Geneva Double Curtain) exhibiting different vigor levels. Leaf area density (LAD, m2·m-3), leaf inclination and leaf azimuth distributions were presented for the canopy systems, as are the distributions of lateral shoot leaves within the canopy. An attempt was made to determine the consequences of the canopy system on the grapevine canopy structure. The canopy structure parameters determined in this study were used in a companion paper as input parameters for a radiation model to describe the grapevine light microclimate

    Canopy structure and radiation regime in grapevine. 2. Modeling radiation interception and distribution inside the canopy

    Get PDF
    A 3D version of the radiation model of SINOQUET and BONHOMME (1992) was used to simulate the light microclimate of grapevine. It was tested against measurements of radiation interception and distribution within two canopy systems (Open Lyre and Geneva Double Curtain) exhibiting different vigor levels. The agreement between the model and the measurements was generally good. Discrepancies may have arisen from incorrect assumptions concerning leaf azimuth distribution and leaf dispersion as well as a lack of accuracy in the description of the distribution of leaf area density inside the canopy. The model also permitted to assess light partitioning between main and lateral shoot leaves which can influence global canopy photosynthesis and berry ripening. As an example of application, the model was used to evaluate the consequences of lateral leaf removing on the interception efficiency of the canopy and the light environment of the fruit zone. The possible use of a geometrical approach to simulate the radiation interception at the canopy scale was also discussed

    Effective vibrating barriers design for the Zoser pyramid using artificial neural network

    Get PDF
    Vibrating Barrier (ViBa) is a non-invasive strategy used to protect buildings, especially ancient and historic structures, from seismic wave vibrations. The ViBa is a spring-mass device installed at a separate location beneath the ground surrounding the structure in concern, for the purpose of reducing ground motion energy, without any intervention with the structure itself. The step pyramid of Zoser was one of the archeological monuments affected by the 1992 Earthquake in Egypt. In this work, a new approach of ViBa design is proposed to protect the step pyramid of Zoser using Artificial Neural Network (ANN). A numerical model was developed to test the predicted pyramid seismic behavior using the ANN-derived ViBa parameters. The ANN optimization approach shows a reduction in the peak step pyramid acceleration by 46 %. This reduction was obtained using tuning and optimization of the developed ANN

    On Ternary FF-manifold Algebras and their Representations

    Full text link
    We introduce a notion of ternary FF-manifold algebras which is a generalization of FF-manifold algebras. We study representation theory of ternary FF-manifold algebras. In particular, we introduce a notion of dual representation which requires additional conditions similar to the binary case. We then establish a notion of a coherence ternary FF-manifold algebra. Moreover, we investigate the construction of ternary FF-manifold algebras using FF-manifold algebras. Furthermore, we introduce and investigate a notion of a relative Rota-Baxter operator with respect to a representation and use it to construct ternary pre-FF-manifold algebras.Comment: Comments are welcome. arXiv admin note: text overlap with arXiv:2102.05595; text overlap with arXiv:2002.10238 by other author
    corecore