2,843 research outputs found
Representation Theory of Twisted Group Double
This text collects useful results concerning the quasi-Hopf algebra \D . We
give a review of issues related to its use in conformal theories and physical
mathematics. Existence of such algebras based on 3-cocycles with values in which mimic for finite groups Chern-Simons terms of gauge theories,
open wide perspectives in the so called "classification program". The
modularisation theorem proved for quasi-Hopf algebras by two authors some years
ago makes the computation of topological invariants possible. An updated,
although partial, bibliography of recent developments is provided.Comment: 15 pages, no figur
Canonical decomposition of linear differential operators with selected differential Galois groups
We revisit an order-six linear differential operator having a solution which
is a diagonal of a rational function of three variables. Its exterior square
has a rational solution, indicating that it has a selected differential Galois
group, and is actually homomorphic to its adjoint. We obtain the two
corresponding intertwiners giving this homomorphism to the adjoint. We show
that these intertwiners are also homomorphic to their adjoint and have a simple
decomposition, already underlined in a previous paper, in terms of order-two
self-adjoint operators. From these results, we deduce a new form of
decomposition of operators for this selected order-six linear differential
operator in terms of three order-two self-adjoint operators. We then generalize
the previous decomposition to decompositions in terms of an arbitrary number of
self-adjoint operators of the same parity order. This yields an infinite family
of linear differential operators homomorphic to their adjoint, and, thus, with
a selected differential Galois group. We show that the equivalence of such
operators is compatible with these canonical decompositions. The rational
solutions of the symmetric, or exterior, squares of these selected operators
are, noticeably, seen to depend only on the rightmost self-adjoint operator in
the decomposition. These results, and tools, are applied on operators of large
orders. For instance, it is seen that a large set of (quite massive) operators,
associated with reflexive 4-polytopes defining Calabi-Yau 3-folds, obtained
recently by P. Lairez, correspond to a particular form of the decomposition
detailed in this paper.Comment: 40 page
Ising n-fold integrals as diagonals of rational functions and integrality of series expansions: integrality versus modularity
We show that the n-fold integrals of the magnetic susceptibility
of the Ising model, as well as various other n-fold integrals of the "Ising
class", or n-fold integrals from enumerative combinatorics, like lattice Green
functions, are actually diagonals of rational functions. As a consequence, the
power series expansions of these solutions of linear differential equations
"Derived From Geometry" are globally bounded, which means that, after just one
rescaling of the expansion variable, they can be cast into series expansions
with integer coefficients. Besides, in a more enumerative combinatorics
context, we show that generating functions whose coefficients are expressed in
terms of nested sums of products of binomial terms can also be shown to be
diagonals of rational functions. We give a large set of results illustrating
the fact that the unique analytical solution of Calabi-Yau ODEs, and more
generally of MUM ODEs, is, almost always, diagonal of rational functions. We
revisit Christol's conjecture that globally bounded series of G-operators are
necessarily diagonals of rational functions. We provide a large set of examples
of globally bounded series, or series with integer coefficients, associated
with modular forms, or Hadamard product of modular forms, or associated with
Calabi-Yau ODEs, underlying the concept of modularity. We finally address the
question of the relations between the notion of integrality (series with
integer coefficients, or, more generally, globally bounded series) and the
modularity (in particular integrality of the Taylor coefficients of mirror
map), introducing new representations of Yukawa couplings.Comment: 100 page
Ising n-fold integrals as diagonals of rational functions and integrality of series expansions
We show that the n-fold integrals of the magnetic susceptibility
of the Ising model, as well as various other n-fold integrals of the "Ising
class", or n-fold integrals from enumerative combinatorics, like lattice Green
functions, correspond to a distinguished class of function generalising
algebraic functions: they are actually diagonals of rational functions. As a
consequence, the power series expansions of the, analytic at x=0, solutions of
these linear differential equations "Derived From Geometry" are globally
bounded, which means that, after just one rescaling of the expansion variable,
they can be cast into series expansions with integer coefficients. We also give
several results showing that the unique analytical solution of Calabi-Yau ODEs,
and, more generally, Picard-Fuchs linear ODEs, with solutions of maximal
weights, are always diagonal of rational functions. Besides, in a more
enumerative combinatorics context, generating functions whose coefficients are
expressed in terms of nested sums of products of binomial terms can also be
shown to be diagonals of rational functions. We finally address the question of
the relations between the notion of integrality (series with integer
coefficients, or, more generally, globally bounded series) and the modularity
of ODEs.Comment: This paper is the short version of the larger (100 pages) version,
available as arXiv:1211.6031 , where all the detailed proofs are given and
where a much larger set of examples is displaye
Globally nilpotent differential operators and the square Ising model
We recall various multiple integrals related to the isotropic square Ising
model, and corresponding, respectively, to the n-particle contributions of the
magnetic susceptibility, to the (lattice) form factors, to the two-point
correlation functions and to their lambda-extensions. These integrals are
holonomic and even G-functions: they satisfy Fuchsian linear differential
equations with polynomial coefficients and have some arithmetic properties. We
recall the explicit forms, found in previous work, of these Fuchsian equations.
These differential operators are very selected Fuchsian linear differential
operators, and their remarkable properties have a deep geometrical origin: they
are all globally nilpotent, or, sometimes, even have zero p-curvature. Focusing
on the factorised parts of all these operators, we find out that the global
nilpotence of the factors corresponds to a set of selected structures of
algebraic geometry: elliptic curves, modular curves, and even a remarkable
weight-1 modular form emerging in the three-particle contribution
of the magnetic susceptibility of the square Ising model. In the case where we
do not have G-functions, but Hamburger functions (one irregular singularity at
0 or ) that correspond to the confluence of singularities in the
scaling limit, the p-curvature is also found to verify new structures
associated with simple deformations of the nilpotent property.Comment: 55 page
Painleve versus Fuchs
The sigma form of the Painlev{\'e} VI equation contains four arbitrary
parameters and generically the solutions can be said to be genuinely
``nonlinear'' because they do not satisfy linear differential equations of
finite order. However, when there are certain restrictions on the four
parameters there exist one parameter families of solutions which do satisfy
(Fuchsian) differential equations of finite order. We here study this phenomena
of Fuchsian solutions to the Painlev{\'e} equation with a focus on the
particular PVI equation which is satisfied by the diagonal correlation function
C(N,N) of the Ising model. We obtain Fuchsian equations of order for
C(N,N) and show that the equation for C(N,N) is equivalent to the
symmetric power of the equation for the elliptic integral .
We show that these Fuchsian equations correspond to rational algebraic curves
with an additional Riccati structure and we show that the Malmquist Hamiltonian
variables are rational functions in complete elliptic integrals. Fuchsian
equations for off diagonal correlations are given which extend our
considerations to discrete generalizations of Painlev{\'e}.Comment: 18 pages, Dedicated to the centenary of the publication of the
Painleve VI equation in the Comptes Rendus de l'Academie des Sciences de
Paris by Richard Fuchs in 190
Renormalization, isogenies and rational symmetries of differential equations
We give an example of infinite order rational transformation that leaves a
linear differential equation covariant. This example can be seen as a
non-trivial but still simple illustration of an exact representation of the
renormalization group.Comment: 36 page
Holonomic functions of several complex variables and singularities of anisotropic Ising n-fold integrals
Lattice statistical mechanics, often provides a natural (holonomic) framework
to perform singularity analysis with several complex variables that would, in a
general mathematical framework, be too complex, or could not be defined.
Considering several Picard-Fuchs systems of two-variables "above" Calabi-Yau
ODEs, associated with double hypergeometric series, we show that holonomic
functions are actually a good framework for actually finding the singular
manifolds. We, then, analyse the singular algebraic varieties of the n-fold
integrals , corresponding to the decomposition of the magnetic
susceptibility of the anisotropic square Ising model. We revisit a set of
Nickelian singularities that turns out to be a two-parameter family of elliptic
curves. We then find a first set of non-Nickelian singularities for and , that also turns out to be rational or ellipic
curves. We underline the fact that these singular curves depend on the
anisotropy of the Ising model. We address, from a birational viewpoint, the
emergence of families of elliptic curves, and of Calabi-Yau manifolds on such
problems. We discuss the accumulation of these singular curves for the
non-holonomic anisotropic full susceptibility.Comment: 36 page
Combining detergent/disinfectant with microfibre material provides a better control of microbial contaminants on surfaces than the use of water alone
The use of microfibre cloths with either water, detergent or disinfectant is currently recommended for hospital cleaning. We explore the efficacy of a microfibre cloth with either water or detergent/disinfectant or sporicidal products using the ASTM2967-15 standard against Staphylococcus aureus, Acinetobacter baumannii and spores Clostridium difficile spores. The use of detergent/disinfectant or sporicidal products had a significantly (ANOVA, p<0.001) better activity than water alone in reducing bacteria and spores’ viability, and in reducing the transfer microorganisms between surfaces. The use of water alone with a microfibre cloth is less effective and should not replace the use of biocidal products
- …