297 research outputs found
Highly permeable and mechanically robust silicon carbide hollow fiber membranes
Silicon carbide (SiC) membranes have shown large potential for applications in water treatment. Being able to make these membranes in a hollow fiber geometry allows for higher surface-to-volume ratios. In this study, we present a thermal treatment procedure that is tuned to produce porous silicon carbide hollow fiber membranes with sufficient mechanical strength. Thermal treatments up to 1500 °C in either nitrogen or argon resulted in relatively strong fibers, that were still contaminated with residual carbon from the polymer binder. After treatment at a higher temperature of 1790 °C, the mechanical strength had decreased as a result of carbon removal, but after treatments at even higher temperature of 2075 °C the SiC-particles sinter together, resulting in fibers with mechanical strengths of 30–40 MPa and exceptionally high water permeabilities of 50,000 L m−2 h−1 bar−1. Combined with the unique chemical and thermal resistance of silicon carbide, these properties make the fibers suitable microfiltration membranes or as a membrane support for application under demanding condition
Is freeze-drying an alternative to solvent exchange for the hydration stop of cementitious suspensions?
In order to understand the rheological properties of cementitious suspensions at early stages, among other phases, the formation of ettringite and its time-dependent influence, whether by amount or morphology, has to be examined in detail using a suitable method to stop the hydration process. It is state-of-the-art to exchange water with isopropanol, however, the water initially remains in the system possibly leading to reduced time resolution. Our group raised the question if freeze-drying or the combination of the water-isopropanol exchange with subsequent freeze-drying might be a suitable technique to achieve an almost complete hydration stop at any time. Recently, it was shown under which circumstances low-pressure characterization techniques can be employed without destroying the samples due to loss of crystal bound water. Here, by implementing these recent results, we show under which circumstances freeze-drying indeed can be employed as fast hydration stop method. © 202
Subcellular concentrations of sugar alcohols and sugars in relation to phloem translocation in Plantago major, Plantago maritima, Prunus persica, and Apium graveolens
Sugar and sugar alcohol concentrations were analyzed in subcellular compartments of mesophyll cells, in the apoplast, and in the phloem sap of leaves of Plantago major (common plantain), Plantago maritima (sea plantain), Prunus persica (peach) and Apium graveolens (celery). In addition to sucrose, common plantain, sea plantain, and peach also translocated substantial amounts of sorbitol, whereas celery translocated mannitol as well. Sucrose was always present in vacuole and cytosol of mesophyll cells, whereas sorbitol and mannitol were found in vacuole, stroma, and cytosol in all cases except for sea plantain. The concentration of sorbitol, mannitol and sucrose in phloem sap was 2- to 40-fold higher than that in the cytosol of mesophyll cells. Apoplastic carbohydrate concentrations in all species tested were in the low millimolar range versus high millimolar concentrations in symplastic compartments. Therefore, the concentration ratios between the apoplast and the phloem were very strong, ranging between 20- to 100-fold for sorbitol and mannitol, and between 200- and 2000-fold for sucrose. The woody species, peach, showed the smallest concentration ratios between the cytosol of mesophyll cells and the phloem as well as between the apoplast and the phloem, suggesting a mixture of apoplastic and symplastic phloem loading, in contrast to the herbal plant species (common plantain, sea plantain, celery) which likely exhibit an active loading mode for sorbitol and mannitol as well as sucrose from the apoplast into the phloem
Impact of Bayesian penalized likelihood reconstruction on quantitative and qualitative aspects for pulmonary nodule detection in digital 2-[18F]FDG-PET/CT
To evaluate the impact of block sequential regularized expectation maximization (BSREM) reconstruction on quantitative and qualitative aspects of 2-[18F]FDG-avid pulmonary nodules compared to conventional ordered subset expectation maximization (OSEM) reconstruction method. Ninety-one patients with 144 2-[18F]FDG-avid pulmonary nodules (all ≤ 20 mm) undergoing PET/CT for oncological (re-)staging were retrospectively included. Quantitative parameters in BSREM and OSEM (including point spread function modelling) were measured, including maximum standardized uptake value (SUVmax). Nodule conspicuity in BSREM and OSEM images was evaluated by two readers. Wilcoxon matched pairs signed-rank test was used to compare quantitative and qualitative parameters in BSREM and OSEM. Pulmonary nodule SUVmax was significantly higher in BSREM images compared to OSEM images [BSREM 5.4 (1.2–20.7), OSEM 3.6 (0.7–17.4); p = 0.0001]. In a size-based analysis, the relative increase in SUVmax was more pronounced in smaller nodules (≤ 7 mm) as compared to larger nodules (8–10 mm, or > 10 mm). Lesion conspicuity was higher in BSREM than in OSEM (p < 0.0001). BSREM reconstruction results in a significant increase in SUVmax and a significantly improved conspicuity of small 2-[18F]FDG-avid pulmonary nodules compared to OSEM reconstruction. Digital 2-[18F]FDG-PET/CT reading may be enhanced with BSREM as small lesion conspicuity is improved
Impact of Hard Magnetic Nanocrystals on the Properties of Hardened Cement Paste
In this work, nano-sized hard magnetic gallium-substituted iron oxide crystals, wherein gallium is used to stabilize the metastable epsilon iron oxide phase, were added to cement-water suspensions at different ratios, which were subsequently hydrated for at least 28 days. It is shown that higher contents of such nanocrystals in the hardened cement paste introduce a magnetic moment, whereas the mechanical properties remain unchanged compared to non-blended hardened cement paste for a wide concentration range
The Fermi energy as common parameter to describe charge compensation mechanisms: A path to Fermi level engineering of oxide electroceramics
Chemical substitution, which can be iso- or heterovalent, is the primary strategy to tailor material properties. There are various ways how a material can react to substitution. Isovalent substitution changes the density of states while heterovalent substitution, i.e. doping, can induce electronic compensation, ionic compensation, valence changes of cations or anions, or result in the segregation or neutralization of the dopant. While all these can, in principle, occur simultaneously, it is often desirable to select a certain mechanism in order to determine material properties. Being able to predict and control the individual compensation mechanism should therefore be a key target of materials science. This contribution outlines the perspective that this could be achieved by taking the Fermi energy as a common descriptor for the different compensation mechanisms. This generalization becomes possible since the formation enthalpies of the defects involved in the various compensation mechanisms do all depend on the Fermi energy. In order to control material properties, it is then necessary to adjust the formation enthalpies and charge transition levels of the involved defects. Understanding how these depend on material composition will open up a new path for the design of materials by Fermi level engineering
- …