33 research outputs found

    A Genome-Wide Association Study of Total Bilirubin and Cholelithiasis Risk in Sickle Cell Anemia

    Get PDF
    Serum bilirubin levels have been associated with polymorphisms in the UGT1A1 promoter in normal populations and in patients with hemolytic anemias, including sickle cell anemia. When hemolysis occurs circulating heme increases, leading to elevated bilirubin levels and an increased incidence of cholelithiasis. We performed the first genome-wide association study (GWAS) of bilirubin levels and cholelithiasis risk in a discovery cohort of 1,117 sickle cell anemia patients. We found 15 single nucleotide polymorphisms (SNPs) associated with total bilirubin levels at the genome-wide significance level (p value <5×10−8). SNPs in UGT1A1, UGT1A3, UGT1A6, UGT1A8 and UGT1A10, different isoforms within the UGT1A locus, were identified (most significant rs887829, p = 9.08×10−25). All of these associations were validated in 4 independent sets of sickle cell anemia patients. We tested the association of the 15 SNPs with cholelithiasis in the discovery cohort and found a significant association (most significant p value 1.15×10−4). These results confirm that the UGT1A region is the major regulator of bilirubin metabolism in African Americans with sickle cell anemia, similar to what is observed in other ethnicities

    Corticotropin-induced reduction of plasma lipoprotein(a) concentrations in healthy individuals and hemodialysis patients: relation to apolipoprotein(a) size polymorphism

    No full text
    To access publisher full text version of this article. Please click on the hyperlink in Additional Links fieldLipoprotein(a) [Lp(a)], a strong independent cardiovascular risk factor, consists of the unique apolipoprotein(a) [apo(a)] covalently linked to a low-density lipoprotein particle. Apo(a) contains a widely differing number of the plasminogen-like kringle IV, a size polymorphism that is codominantly inherited. In addition to powerful genetic control, renal failure is known to influence the plasma Lp(a) concentration. There is still a lot to be learned about the mode and site of catabolism of Lp(a), and there is no readily applicable Lp(a)-lowering treatment available. Therefore, it was of interest to study further the Lp(a)-lowering effect of corticotropin (ACTH) that has been demonstrated in small studies. The main purpose of the present study was to investigate the influence of ACTH on different apo(a) isoforms. Short-term treatment with ACTH decreased the plasma Lp(a) concentration in all 26 study participants. The two study groups (12 healthy individuals and 14 hemodialysis patients) responded similarly, with a median decrease in plasma Lp(a) of 39% and 49%, respectively. In subjects with two clearly separable apo(a) bands, apo(a) phenotyping and densitometric scanning of the bands before and after treatment with ACTH revealed a change in the proportion of apo(a) isoforms, ie, a shift toward the isoform with lower molecular weight. This was observed in seven of nine investigated subjects (four of five healthy individuals and three of four hemodialysis patients)

    Lipoprotein(a) determination and risk of cardiovascular disease in South African patients with familial hypercholesterolaemia

    Get PDF
    CITATION: Scholtz, C. L. et al 2000. Lipoprotein(a) determination and risk of cardiovascular disease in South African patients with familial hypercholesterolaemia. South African Medical Journal, 90(4):374-378.The original publication is available at http://www.samj.org.zaObjective. A raised plasma level of lipoprotein(a) (Lp(a)) is an established genetic risk factor for coronary heart disease (CHD), particularly in patients with concomitant elevation of low-density lipoprotein (LDL) cholesterol. The current study focused on the comparison of two commercially available Lp(a) assay kits to determine whether differences observed in measured Lp(a) levels could be deemed negligible in CHD risk assessment in familial hypercholesterolaemic (FH) patients. Design. To compare results obtained on duplicate plasma samples using two commercially available Lp(a) measuring kits, the immunoradiometric assay (RIA) and the enzyme-linked immunoabsorbent assay (ELISA). Setting. Division of Human Genetics, Department of Obstetrics and Gynaecology, University of Stellenbosch, Tygerberg, South Africa and the Institute for Medical Biology and Human Genetics, University of Innsbruck, Austria. Subjects. Plasma samples were obtained from 146 family members of 65 molecularly characterised South African FH families for comparative analysis. Results. Using the RIA method, 34 samples (23%) considered to be in the normal range by the ELISA technique, were placed in the high-risk group (> 30 mg/dl). Only one sample, considered to have a normal Lp(a) level with the RIA method, was categorised by the ELISA technique as high risk. Conclusion. Our data demonstrate that measurements of Lp(a) using the RIA method (the only assay available in South Africa at the time of this study) differ significantly from those obtained by the reference ELISA technique, suggesting that misclassification could lead to inaccurate CHD risk assessment. This is an important consideration in Afrikaner FH families, where plasma levels of Lp(a) have been shown to be elevated significantly in FH patients compared with non-FH individuals.Publisher’s versio

    Immunohistochemical localization of apolipoprotein A-IV in human kidney tissue.

    No full text
    Immunohistochemical localization of apolipoprotein A-IV in human kidney tissue.BackgroundApolipoprotein A-IV (ApoA-IV) is a 46 kD glycoprotein thought to protect against atherosclerosis. It is synthesized primarily in epithelial cells of the small intestine. Elevated plasma concentrations of ApoA-IV in patients with chronic kidney disease suggest that the human kidney is involved in ApoA-IV metabolism.MethodsTo investigate whether the human kidney directly metabolizes ApoA-IV and which kidney tissue compartment is involved therein, ApoA-IV was localized by immunohistochemistry in 28 healthy kidney tissue samples obtained from patients undergoing nephrectomy. ApoA-IV mRNA expression was analyzed by real-time polymerase chain reaction (PCR) to exclude de novo synthesis in the kidney.ResultsApoA-IV immunostaining was detected in proximal and distal tubular cells, capillaries and blood vessels but not inside glomeruli. ApoA-IV was predominantly found in the brush border of proximal tubules and in intracellular granules and various plasma membrane domains of both proximal and distal tubules. mRNA expression analysis revealed that no ApoA-IV was produced in the kidney.ConclusionThe immunoreactivity of ApoA-IV observed in kidney tubular cells suggests a direct role of the human kidney in ApoA-IV metabolism. The granular staining pattern probably represents lysosomes degrading ApoA-IV. The additional ApoA-IV localization in distal tubules suggests a rescue function to reabsorb otherwise escaping ApoA-IV in case proximal tubules cannot reabsorb all ApoA-IV. Since no mRNA expression could be detected in any kidney cells, the observed ApoA-IV immunoreactivity represents uptake and not de novo synthesis of ApoA-IV
    corecore