529 research outputs found

    Long-distance entanglement generation with scalable and robust two-dimensional quantum network

    Full text link
    We present a protocol for generating entanglement over long distances in a two-dimensional quantum network based on the surface error-correction code. This protocol requires a fixed number of quantum memories at each node of the network and tolerates error rates of up to 1.67% in the quantum channels.Comment: 5 pags, 4 figs. V2: text corrected, discussion on channel losses added. Accepted by PR

    Coherent Eavesdropping Attacks in Quantum Cryptography: Nonequivalence of Quantum and Classical Key Distillation

    Full text link
    The security of a cryptographic key that is generated by communication through a noisy quantum channel relies on the ability to distill a shorter secure key sequence from a longer insecure one. We show that -- for protocols that use quantum channels of any dimension and completely characterize them by state tomography -- the noise threshold for classical advantage distillation is substantially lower than the threshold for quantum entanglement distillation because the eavesdropper can perform powerful coherent attacks. The earlier claims that the two noise thresholds are identical, which were based on analyzing incoherent attacks only, are therefore invalid.Comment: 4 pages, 1 figure; this is the detailed account for the results Reported in quant-ph/031015

    Direct estimation of functionals of density operators by local operations and classical communication

    Get PDF
    We present a method of direct estimation of important properties of a shared bipartite quantum state, within the "distant laboratories" paradigm, using only local operations and classical communication. We apply this procedure to spectrum estimation of shared states, and locally implementable structural physical approximations to incompletely positive maps. This procedure can also be applied to the estimation of channel capacity and measures of entanglement

    Creation of quantum error correcting codes in the ultrastrong coupling regime

    Full text link
    We propose to construct large quantum graph codes by means of superconducting circuits working at the ultrastrong coupling regime. In this physical scenario, we are able to create a cluster state between any pair of qubits within a fraction of a nanosecond. To exemplify our proposal, creation of the five-qubit and Steane codes is numerically simulated. We also provide optimal operating conditions with which the graph codes can be realized with state-of-the-art superconducting technologies.Comment: Added a new appendix sectio

    Population mixing due to dipole-dipole interactions in a 1D array of multilevel atoms

    Get PDF
    We examine theoretically how dipole-dipole interactions arising from multiple photon scattering lead to a modified distribution of ground state populations in a driven, ordered 1D array of multilevel atoms. Specifically, we devise a level configuration in which a ground-state population accumulated due solely to dipole-dipole interactions can be up to 20\% in regimes accessible to current experiments with neutral atom arrays. For much larger systems, the steady state can consist of an equal distribution of population across the ground state manifold. Our results illustrate how dipole-dipole interactions can be accentuated through interference, and regulated by the geometry of ordered atom arrays. More generally, control techniques for multilevel atoms that can be degraded by multiple scattering, such as optical pumping, will benefit from an improved understanding and control of dipole-dipole interactions available in ordered arrays.Comment: paper is now identical to published versio

    A Labelling Scheme for Higher Dimensional Simplex Equations

    Get PDF
    We present a succinct way of obtaining all possible higher dimensional generalization of Quantum Yang-Baxter Equation (QYBE). Using the scheme, we could generate the two popular three-simplex equations, namely: Zamolodchikov's tetrahedron equation (ZTE) and Frenkel and Moore equation (FME).Comment: To appear as a Letter to the Editor in J. Phys. A:Math and Ge

    Geometric phase in open systems: beyond the Markov approximation and weak coupling limit

    Full text link
    Beyond the quantum Markov approximation and the weak coupling limit, we present a general theory to calculate the geometric phase for open systems with and without conserved energy. As an example, the geometric phase for a two-level system coupling both dephasingly and dissipatively to its environment is calculated. Comparison with the results from quantum trajectory analysis is presented and discussed

    Quantum cryptography based on qutrit Bell inequalities

    Get PDF
    We present a cryptographic protocol based upon entangled qutrit pairs. We analyze the scheme under a symmetric incoherent attack and plot the region for which the protocol is secure and compare this with the region of violations of certain Bell inequalities

    Information theoretic approach to single-particle and two-particle interference in multi-path interferometers

    Get PDF
    We propose entropic measures for the strength of single-particle and two-particle interference in interferometric experiments where each particle of a pair traverses a multi-path interferometer. Optimal single-particle interference excludes any two-particle interference, and vice versa. We report an inequality that states the compromises allowed by quantum mechanics in intermediate situations, and identify a class of two-particle states for which the upper bound is reached. Our approach is applicable to symmetric two-partite systems of any finite dimension.Comment: RevTex 4, 4 pages, 2 figure
    corecore