25 research outputs found

    Electroweak Gauge-Boson Production at Small q_T: Infrared Safety from the Collinear Anomaly

    Get PDF
    Using methods from effective field theory, we develop a novel, systematic framework for the calculation of the cross sections for electroweak gauge-boson production at small and very small transverse momentum q_T, in which large logarithms of the scale ratio M_V/q_T are resummed to all orders. These cross sections receive logarithmically enhanced corrections from two sources: the running of the hard matching coefficient and the collinear factorization anomaly. The anomaly leads to the dynamical generation of a non-perturbative scale q_* ~ M_V e^{-const/\alpha_s(M_V)}, which protects the processes from receiving large long-distance hadronic contributions. Expanding the cross sections in either \alpha_s or q_T generates strongly divergent series, which must be resummed. As a by-product, we obtain an explicit non-perturbative expression for the intercept of the cross sections at q_T=0, including the normalization and first-order \alpha_s(q_*) correction. We perform a detailed numerical comparison of our predictions with the available data on the transverse-momentum distribution in Z-boson production at the Tevatron and LHC.Comment: 34 pages, 9 figure

    Theoretical Uncertainties in Electroweak Boson Production Cross Sections at 7, 10, and 14 TeV at the LHC

    Full text link
    We present an updated study of the systematic errors in the measurements of the electroweak boson cross-sections at the LHC for various experimental cuts for a center of mass energy of 7, 10 and 14 TeV. The size of both electroweak and NNLO QCD contributions are estimated, together with the systematic error from the parton distributions. The effects of new versions of the MSTW, CTEQ, and NNPDF PDFs are considered.Comment: PDFLatex with JHEP3.cls. 22 pages, 43 figures. Version 2 adds the CT10W PDF set to analysis and updates the final systematic error table and conclusions, plus several citations and minor wording changes. Version 3 adds some references on electroweak and mixed QED/QCD corrections. Version 4 adds more references and acknowledgement

    Model Independent Evolution of Transverse Momentum Dependent Distribution Functions (TMDs) at NNLL

    Full text link
    We discuss the evolution of the eight leading twist transverse momentum dependent parton distribution functions, which turns out to be universal and spin independent. By using the highest order perturbatively calculable ingredients at our disposal, we perform the resummation of the large logarithms that appear in the evolution kernel of transverse momentum distributions up to next-to-next-to-leading logarithms (NNLL), thus obtaining an expression for the kernel with highly reduced model dependence. Our results can also be obtained using the standard CSS approach when a particular choice of the bb^* prescription is used. In this sense, and while restricted to the perturbative domain of applicability, we consider our results as a "prediction" of the correct value of bmaxb_{\rm max} which is very close to 1.5GeV11.5 {\rm GeV}^{-1}. We explore under which kinematical conditions the effects of the non-perturbative region are negligible, and hence the evolution of transverse momentum distributions can be applied in a model independent way. The application of the kernel is illustrated by considering the unpolarized transverse momentum dependent parton distribution function and the Sivers function.Comment: To appear in EPJC. 17 pages, 7 figure

    Real-Life Evidence for Tedizolid Phosphate in the Treatment of Cellulitis and Wound Infections: A Case Series

    Get PDF
    Introduction Tedizolid phosphate 200 mg, once daily for 6 days, has recently been approved for the treatment of patients with acute bacterial skin and skin structure infections (ABSSSIs) in several countries; however, clinical experience in real-life settings is currently limited. Here, we report on the use of tedizolid with an extended treatment duration for complex and severe ABSSSIs in real-world clinical settings. Methods Two patients with cellulitis and two patients with surgical site infection (SSI), aged 26–60 years, were treated with tedizolid phosphate 200 mg, intravenous/oral (IV/PO) or IV only, once daily at four different institutions. Results Two morbidly obese patients had non-necrotizing, non-purulent severe cellulitis, which were complicated by sepsis or systemic inflammatory response syndrome plus myositis. One female patient failed on first-line empiric therapy with IV cefalotin, clindamycin and imipenem (3–4 days), and was switched to IV/PO tedizolid (7 + 5 days). One male patient received IV clindamycin plus IV/PO tedizolid (5 + 5 days), but clindamycin was discontinued on Day 3 due to an adverse event. For both patients, clinical signs and symptoms improved within 72 h, and laboratory results were normalized by Days 7 and 8, respectively. Two other patients (one obese, diabetic female with chronic hepatitis and chronic obstructive pulmonary disease) had complicated SSIs occurring 10 days after hernia repair with mesh or 3 months after spinal fusion surgery with metal implant. First patient with previous methicillin-resistant Staphylococcus aureus (MRSA) bacteremia received a 7-day tedizolid IV course empirically. The second patient with culture-confirmed MRSA infection received a 14-day IV course. Both patients responded within 72 h, and local and systemic signs normalized by end of treatment. There were no reports of thrombocytopenia. Conclusion Tedizolid phosphate 200 mg for 7–14 days was a favored treatment option for patients with severe/complex ABSSSIs, and was effective following previous treatment failure or in late-onset infections

    A note on radiative corrections to μ\mu and τ\tau decays

    No full text
    Radiative corrections in the order {\alpha\over{2\pi}}{{m^2_e}\over m^2_\mu} to \mu - and {\alpha\over{2\pi}}{{m^2_\mu}\over m^2_\tau} to \tau - decays are calculated. The decay width is enhanced by 4.48\cdot 10^{-3} ({\alpha\over{2\pi}}) in the muon case and by 0.283 ({\alpha\over{2\pi}}) for the \tau \rightarrow \mu \nu_\tau \bar\nu_\mu (\gamma) decay. Influence of these corrections on the electroweak data is discussed
    corecore