24 research outputs found

    IEEE Access Special Section Editorial: Wearable and Implantable Devices and Systems

    Get PDF
    © 2013 IEEE. Circuit techniques, sensors, antennas and communications systems are envisioned to help build new technologies over the next several years. Advances in the development and implementation of such technologies have already shown us their unique potential in realizing next-generation sensing systems. Applications include wearable consumer electronics, healthcare monitoring systems, and soft robotics, as well as wireless implants. There have been some interesting developments in the areas of circuits and systems, involving studies related to low-power electronics, wireless sensor networks, wearable circuit behaviour, security, real-time monitoring, connectivity of sensors, and Internet of Things (IoT). The direction for the current technology is electronics systems on large area electronics, integrated implantable systems and wearable sensors. So far, the research in the field has focused on materials, new processing techniques and one-off devices, such as diodes and transistors. However, current technology is not sufficient for future electronics to be useful in new applications; a great demand exists to scale up the research towards circuits and systems. Recent developments indicate that, in addition to fabrication technology, special attention should also be given to design, simulation and modeling of electronics, while keeping sensing system integration, power management, and sensors network under consideration

    Dual-band implantable antennas for medical telemetry: a fast design methodology and validation for intra-cranial pressure monitoring

    Get PDF
    WOS:000323538100010 (Nº de Acesso Web of Science)In this study, we suggest and experimentally validate a methodology for fast and optimized design of dual-band implantable antennas for medical telemetry (MICS, 402-405 MHz, and ISM, 2400-2480 MHz). The methodology aims to adjust the design of a parametric dual-band antenna model towards optimally satisfying the requirements imposed by the antenna-fabrication procedure and medical application in hand. Design is performed in a systematic, fast, and accurate way. To demonstrate its effectiveness, the proposed methodology is applied to optimize the parametric antenna model for intra-cranial pressure (ICP) monitoring given a specific antenna-fabrication procedure. For validation purposes, a prototype of the optimized antenna is fabricated and experimentally tested. The proposed antenna is further evaluated within a 13-tissue anatomical head model in terms of resonance, radiation, and safety performance for ICP monitoring. Extensive parametric studies of the optimized antenna are, finally, performed. Feasibility of the proposed parametric antenna model to be optimally re-adjusted for various scenarios is demonstrated, and generic guidelines are provided for implantable antenna design. Dual-band operation is targeted to ensure energy autonomy for the implant. Finite Element (FE) and Finite Difference Time Domain (FDTD) simulations are carried out in homogeneous rectangular and anatomical head tissue models, respectively

    Miniature implantable antennas for biomedical telemetry: from simulation to realization

    Get PDF
    WOS:000310154700019 (Nº de Acesso Web of Science)“Prémio Científico ISCTE-IUL 2013”We address numerical versus experimental design and testing of miniature implantable antennas for biomedical telemetry in the medical implant communications service band (402-405 MHz). A model of a novel miniature antenna is initially proposed for skin implantation, which includes varying parameters to deal with fabrication-specific details. An iterative design-and-testing methodology is further suggested to determine the parameter values that minimize deviations between numerical and experimental results. To assist in vitro testing, a low-cost technique is proposed for reliably measuring the electric properties of liquids without requiring commercial equipment. Validation is performed within a specific prototype fabrication/testing approach for miniature antennas. To speed up design while providing an antenna for generic skin implantation, investigations are performed inside a canonical skin-tissue model. Resonance, radiation, and safety performance of the proposed antenna is finally evaluated inside an anatomical head model. This study provides valuable insight into the design of implantable antennas, assessing the significance of fabrication-specific details in numerical simulations and uncertainties in experimental testing for miniature structures. The proposed methodology can be applied to optimize antennas for several fabrication/testing approaches and biotelemetry applications

    Studies in RF power communication, SAR, and temperature elevation in wireless implantable neural interfaces

    Get PDF
    Implantable neural interfaces are designed to provide a high spatial and temporal precision control signal implementing high degree of freedom real-time prosthetic systems. The development of a Radio Frequency (RF) wireless neural interface has the potential to expand the number of applications as well as extend the robustness and longevity compared to wired neural interfaces. However, it is well known that RF signal is absorbed by the body and can result in tissue heating. In this work, numerical studies with analytical validations are performed to provide an assessment of power, heating and specific absorption rate (SAR) associated with the wireless RF transmitting within the human head. The receiving antenna on the neural interface is designed with different geometries and modeled at a range of implanted depths within the brain in order to estimate the maximum receiving power without violating SAR and tissue temperature elevation safety regulations. Based on the size of the designed antenna, sets of frequencies between 1 GHz to 4 GHz have been investigated. As expected the simulations demonstrate that longer receiving antennas (dipole) and lower working frequencies result in greater power availability prior to violating SAR regulations. For a 15 mm dipole antenna operating at 1.24 GHz on the surface of the brain, 730 uW of power could be harvested at the Federal Communications Commission (FCC) SAR violation limit. At approximately 5 cm inside the head, this same antenna would receive 190 uW of power prior to violating SAR regulations. Finally, the 3-D bio-heat simulation results show that for all evaluated antennas and frequency combinations we reach FCC SAR limits well before 1 °C. It is clear that powering neural interfaces via RF is possible, but ultra-low power circuit designs combined with advanced simulation will be required to develop a functional antenna that meets all system requirements. © 2013 Zhao et al

    Miniature scalp-implantable antennas for telemetry in the MICS and ISM bands: Design, safety considerations and link budget analysis

    No full text

    Detuning issues and performance of a novel implantable antenna for telemetry applications

    No full text

    A review of implantable patch antennas for biomedical telemetry: Challenges and solutions

    No full text

    UWB Wearable Antenna with a Full Ground Plane Based on PDMS-Embedded Conductive Fabric

    Full text link
    A new flexible ultrawideband (UWB) antenna is presented for wearable applications in the 3.7-10.3 GHz band, which is highly tolerant to human body loading and physical deformation. The antenna exhibits a footprint of 80 mm × 67 mm and is based on a simple microstrip structure with two modified arc-shaped patches as the main radiator. A full ground plane is maintained on the opposite side of the substrate to suppress antenna loading from the underlying biological tissues and back radiation directed toward the human body. For enhanced flexibility and robustness, the proposed antenna is realized using conductive fabric embedded into polydimethylsiloxane polymer. Promising simulation and experimental results are presented for free-space and in-vitro wearable scenarios. To our knowledge, this is the first UWB antenna with a full ground plane that is concurrently highly tolerant to harsh operating conditions, such as those encountered in wearable applications

    Performance of a novel miniature antenna implanted in the human head for wireless biotelemetry

    No full text
    corecore