281 research outputs found
Delineating the role of βIV-Tubulins in pancreatic cancer: βIVb-tubulin inhibition sensitizes pancreatic cancer cells to vinca alkaloids
Pancreatic cancer (PC) is a lethal disease which is characterized by chemoresistance. Components of the cell cytoskeleton are therapeutic targets in cancer. βIV-tubulin is one such component that has two isotypes—βIVa and βIVb. βIVa and βIVb isotypes only differ in two amino acids at their C-terminus. Studies have implicated βIVa-tubulin or βIVb-tubulin expression with chemoresistance in prostate, breast, ovarian and lung cancer. However, no studies have examined the role of βIV-tubulin in PC or attempted to identify isotype specific roles in regulating cancer cell growth and chemosensitivity. We aimed to determine the role of βIVa- or βIVb-tubulin on PC growth and chemosensitivity. PC cells (MiaPaCa-2, HPAF-II, AsPC1) were treated with siRNA (control, βIVa-tubulin or βIVb-tubulin). The ability of PC cells to form colonies in the presence or absence of chemotherapy was measured by clonogenic assays. Inhibition of βIVa-tubulin in PC cells had no effect chemosensitivity. In contrast, inhibition of βIVb-tubulin in PC cells sensitized to vinca alkaloids (Vincristine, Vinorelbine and Vinblastine), which was accompanied by increased apoptosis and enhanced cell cycle arrest. We show for the first time that βIVb-tubulin, but not βIVa-tubulin, plays a role in regulating vinca alkaloid chemosensitivity in PC cells. The results from this study suggest βIVb-tubulin may be a novel therapeutic target and predictor of vinca alkaloid sensitivity for PC and warrants further investigation
On the quenching behaviour of a semilinear wave equation modelling MEMS technology
This is a pre-copy-editing, author-produced PDF of an article accepted for publication in Discrete and Continuous Dynamical Systems - Series A following peer review. The definitive publisher-authenticated version 2015, 35(3), pp. 1009-1037 is available online at: http://dx.doi.org/10.3934/dcds.2015.35.100
A high-throughput 3D bioprinted cancer cell migration and invasion model with versatile and broad biological applicability
Understanding the underlying mechanisms of migration and metastasis is a key focus of cancer research. There is an urgent need to develop in vitro 3D tumor models that can mimic physiological cell-cell and cell-extracellular matrix interactions, with high reproducibility and that are suitable for high throughput (HTP) drug screening. Here, we developed a HTP 3D bioprinted migration model using a bespoke drop-on-demand bioprinting platform. This HTP platform coupled with tunable hydrogel systems enables (i) the rapid encapsulation of cancer cells within in vivo tumor mimicking matrices, (ii) in situ and real-time measurement of cell movement, (iii) detailed molecular analysis for the study of mechanisms underlying cell migration and invasion, and (iv) the identification of novel therapeutic options. This work demonstrates that this HTP 3D bioprinted cell migration platform has broad applications across quantitative cell and cancer biology as well as drug screening
A Covalently Crosslinked Ink for Multimaterials Drop-on-Demand 3D Bioprinting of 3D Cell Cultures
In vitro 3D cell models have been accepted to better recapitulate aspects of in vivo organ environment than 2D cell culture. Currently, the production of these complex in vitro 3D cell models with multiple cell types and microenvironments remains challenging and prone to human error. Here, a versatile ink comprising a 4-arm poly(ethylene glycol) (PEG)-based polymer with distal maleimide derivatives as the main ink component and a bis-thiol species as the activator that crosslinks the polymer to form the hydrogel in less than a second is reported. The rapid gelation makes the polymer system compatible with 3D bioprinting. The ink is combined with a novel drop-on-demand 3D bioprinting platform, designed specifically for producing 3D cell cultures, consisting of eight independently addressable nozzles and high-throughput printing logic for creating complex 3D cell culture models. The combination of multiple nozzles and fast printing logic enables the rapid preparation of many complex 3D cell cultures comprising multiple hydrogel environments in one structure in a standard 96-well plate format. The platform's compatibility for biological applications is validated using pancreatic ductal adenocarcinoma cancer (PDAC) and human dermal fibroblast cells with their phenotypic responses controlled by tuning the hydrogel microenvironment
Mathematical models of DNA methylation dynamics: Implications for health and ageing
DNA methylation status is a key epigenetic process which has been intimately associated with gene regulation. In recent years growing evidence has associated DNA methylation status with a variety of diseases including cancer, Alzheimers disease and cardiovascular disease. Moreover, changes to DNA methylation have also recently been implicated in the ageing process. The factors which underpin DNA methylation are complex, and remain to be fully elucidated. Over the years mathematical modelling has helped to shed light on the dynamics of this important molecular system. Although the existing models have contributed significantly to our overall understanding of DNA methylation, they fall-short of fully capturing the dynamics of this process. In this paper we develop a linear and nonlinear model which captures more fully the dynamics of the key intracellular events which characterise DNA methylation. In particular the outcomes of our linear model result in gene promoter specific methylation levels which are more biologically plausible than those revealed by previous mathematical models. In addition, our non-linear model predicts DNA methylation promoter bistability which is commonly observed experimentally. The findings from our models have implications for our current understanding of how changes to the dynamics which underpin DNA methylation affect ageing and health
Particle approximation of the one dimensional Keller-Segel equation, stability and rigidity of the blow-up
We investigate a particle system which is a discrete and deterministic
approximation of the one-dimensional Keller-Segel equation with a logarithmic
potential. The particle system is derived from the gradient flow of the
homogeneous free energy written in Lagrangian coordinates. We focus on the
description of the blow-up of the particle system, namely: the number of
particles involved in the first aggregate, and the limiting profile of the
rescaled system. We exhibit basins of stability for which the number of
particles is critical, and we prove a weak rigidity result concerning the
rescaled dynamics. This work is complemented with a detailed analysis of the
case where only three particles interact
In vivo [64Cu]CuCl2 PET imaging reveals activity of Dextran-Catechin on tumor copper homeostasis
Given the strong clinical evidence that copper levels are significantly elevated in a wide spectrum of tumors, copper homeostasis is considered as an emerging target for anticancer drug design. Monitoring copper levels in vivo is therefore of paramount importance when assessing the efficacy of copper-targeting drugs. Herein, we investigated the activity of the copper-targeting compound Dextran-Catechin by developing a [64Cu]CuCl2 PET imaging protocol to monitor its effect on copper homeostasis in tumors. Methods: Protein expression of copper transporter 1 (CTR1) in tissue microarrays representing 90 neuroblastoma patient tumors was assessed by immunohistochemistry. Western blotting analysis was used to study the effect of Dextran-Catechin on the expression of CTR1 in neuroblastoma cell lines and in tumors. A preclinical human neuroblastoma xenograft model was used to study anticancer activity of Dextran-Catechin in vivo and its effect on tumor copper homeostasis. PET imaging with [64Cu]CuCl2 was performed in such preclinical neuroblastoma model to monitor alteration of copper levels in tumors during treatment. Results: CTR1 protein was found to be highly expressed in patient neuroblastoma tumors by immunohistochemistry. Treatment of neuroblastoma cell lines with Dextran-Catechin resulted in decreased levels of glutathione and in downregulation of CTR1 expression, which caused a significant decrease of intracellular copper. No changes in CTR1 expression was observed in normal human astrocytes after Dextran-Catechin treatment. In vivo studies and PET imaging analysis using the neuroblastoma preclinical model revealed elevated [64Cu]CuCl2 retention in the tumor mass. Following treatment with Dextran-Catechin, there was a significant reduction in radioactive uptake, as well as reduced tumor growth. Ex vivo analysis of tumors collected from Dextran-Catechin treated mice confirmed the reduced levels of CTR1. Interestingly, copper levels in blood were not affected by treatment, demonstrating potential tumor specificity of Dextran-Catechin activity. Conclusion: Dextran-Catechin mediates its activity by lowering CTR1 and intracellular copper levels in tumors. This finding further reveals a potential therapeutic strategy for targeting copper-dependent cancers and presents a novel PET imaging method to assess patient response to copper-targeting anticancer treatments
A free boundary problem modeling electrostatic MEMS: II. nonlinear bending effects
Well-posedness of a free boundary problem for electrostatic microelectromechanical systems (MEMS) is investigated when nonlinear bending effects are taken into account. The model describes the evolution of the deflection of an electrically conductive elastic membrane suspended above a fixed ground plate together with the electrostatic potential in the free domain between the membrane and the fixed ground plate. The electrostatic potential is harmonic in that domain and its values are held fixed along the membrane and the ground plate. The equation for the membrane deflection is a parabolic quasilinear fourth-order equation, which is coupled to the gradient trace of the electrostatic potential on the membrane
On the dynamics of a non-local parabolic equation arising from the Gierer-Meinhardt system
This is an author-created, un-copyedited version of an article accepted for publication in Nonlinearity. The publisher is not responsible for any errors or omissions in this version of the manuscript or any version derived from it. The Version of Record is available online at http://iopscience.iop.org/article/10.1088/1361-6544/aa64b2/metaThe purpose of the current paper is to contribute to the comprehension of the dynamics of the shadow system of an activator-inhibitor system known as a Gierer-Meinhardt model. Shadow systems are intended to work as an intermediate step between single equations and reaction-diffusion systems. In the case where the inhibitor's response to the activator's growth is rather weak, then the shadow system of the Gierer-Meinhardt model is reduced to a single though non-local equation whose dynamics will be investigated. We mainly focus on the derivation of blow-up results for this non-local equation which can be seen as instability patterns of the shadow system. In particular, a {\it diffusion driven instability (DDI)}, or {\it Turing instability}, in the neighbourhood of a constant stationary solution, which it is destabilised via diffusion-driven blow-up, is obtained. The latter actually indicates the formation of some unstable patterns, whilst some stability results of global-in-time solutions towards non-constant steady states guarantee the occurrence of some stable patterns
- …