649 research outputs found
Comparison of Image Registration Based Measures of Regional Lung Ventilation from Dynamic Spiral CT with Xe-CT
Purpose: Regional lung volume change as a function of lung inflation serves
as an index of parenchymal and airway status as well as an index of regional
ventilation and can be used to detect pathologic changes over time. In this
article, we propose a new regional measure of lung mechanics --- the specific
air volume change by corrected Jacobian.
Methods: 4DCT and Xe-CT data sets from four adult sheep are used in this
study. Nonlinear, 3D image registration is applied to register an image
acquired near end inspiration to an image acquired near end expiration.
Approximately 200 annotated anatomical points are used as landmarks to evaluate
registration accuracy. Three different registration-based measures of regional
lung mechanics are derived and compared: the specific air volume change
calculated from the Jacobian (SAJ); the specific air volume change calculated
by the corrected Jacobian (SACJ); and the specific air volume change by
intensity change (SAI).
Results: After registration, the mean registration error is on the order of 1
mm. For cubical ROIs in cubes with size 20 mm 20 mm 20 mm,
the SAJ and SACJ measures show significantly higher correlation (linear
regression, average and ) with the Xe-CT based measure of
specific ventilation (sV) than the SAI measure. For ROIs in slabs along the
ventral-dorsal vertical direction with size of 150 mm 8 mm 40
mm, the SAJ, SACJ, and SAI all show high correlation (linear regression,
average , and ) with the Xe-CT based sV without
significant differences when comparing between the three methods.
Conclusion: Given a deformation field by an image registration algorithm,
significant differences between the SAJ, SACJ, and SAI measures were found at a
regional level compared to the Xe-CT sV in four sheep that were studied
Numerical methods for the detection of phase defect structures in excitable media
Electrical waves that rotate in the heart organize dangerous cardiac arrhythmias. Finding the region around which such rotation occurs is one of the most important practical questions for arrhythmia management. For many years, the main method for finding such regions was so-called phase mapping, in which a continuous phase was assigned to points in the heart based on their excitation status and defining the rotation region as a point of phase singularity. Recent analysis, however, showed that in many rotation regimes there exist phase discontinuities and the region of rotation must be defined not as a point of phase singularity, but as a phase defect line. In this paper, we use this novel methodology and perform a comparative study of three different phase definitions applied to in silico data and to experimental data obtained from optical voltage mapping experiments on monolayers of human atrial myocytes. We introduce new phase defect detection algorithms and compare them with those that appeared in literature already. We find that the phase definition is more important than the algorithm to identify sudden spatial phase variations. Sharp phase defect lines can be obtained from a phase derived from local activation times observed during one cycle of arrhythmia. Alternatively, similar quality can be obtained from a reparameterization of the classical phase obtained from observation of a single timeframe of transmembrane potential. We found that the phase defect line length was (35.9 ± 6.2)mm in the Fenton-Karma model and (4.01 ± 0.55)mm in cardiac human atrial myocyte monolayers. As local activation times are obtained during standard clinical cardiac mapping, the methods are also suitable to be applied to clinical datasets. All studied methods are publicly available and can be downloaded from an institutional web-server. © 2022 Kabus et al. access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.Fonds Wetenschappelijk Onderzoek, FWO: 1177022N, G025820N; Ministry of Education and Science of the Russian Federation, Minobrnauka: 075-15-2020-926; KU Leuven: GPUL/20/012DK is supported by KU Leuven grant GPUL/20/012. LA was funded by a KU Leuven FLOF grant and a FWO-Flanders fellowship, grant 1177022N; LL was funded by KU Leuven and FWO-Flanders, grant G025820N. Research at Sechenov University was financed by The Ministry of Science and Higher Education of the Russian Federation within the framework of state support for the creation and development of World-Class Research Centers "Digital biodesign and personalized healthcare" 075-15-2020-926. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. We are grateful to Sven O. Dekker, Niels Harlaar, Daniël A. Pijnappels and Antoine A.F. de Vries for providing optical voltage mapping data of cardiomyogenically differentiated hiAM monolayers. Moreover, we thank Tim De Coster for helpful comments on the analogy between a PDL and the spiral wave tip trajectory
Scroll Waves and Filaments in Excitable Media of Higher Spatial Dimension
Excitable media are ubiquitous in nature, and in such systems the local excitation tends to self-organize in traveling waves, or in rotating spiral-shaped patterns in two or three spatial dimensions. Examples include waves during a pandemic or electrical scroll waves in the heart. Here we show that such phenomena can be extended to a space of four or more dimensions and propose that connections of excitable elements in a network setting can be regarded as additional spatial dimensions. Numerical simulations are performed in four dimensions using the FitzHugh-Nagumo model, showing that the vortices rotate around a two-dimensional surface which we define as the superfilament. Evolution equations are derived for general superfilaments of codimension two in an N-dimensional space, and their equilibrium configurations are proven to be minimal surfaces. We suggest that biological excitable systems, such as the heart or brain which have nonlocal connections can be regarded, at least partially, as multidimensional excitable media and discuss further possible studies in this direction. © 2023 American Physical Society
Response of Submerged Macrophyte Communities to External and Internal Restoration Measures in North Temperate Shallow Lakes
Submerged macrophytes play a key role in north temperate shallow lakes by stabilising clear-water conditions. Eutrophication has resulted in macrophyte loss and shifts to turbid conditions in many lakes. Considerable efforts have been devoted to shallow lake restoration in many countries, but long-term success depends on a stable recovery of submerged macrophytes. However, recovery patterns vary widely and remain to be fully understood. We hypothesize that reduced external nutrient loading leads to an intermediate recovery state with clear spring and turbid summer conditions similar to the pattern described for eutrophication. In contrast, lake internal restoration measures can result in transient clear-water conditions both in spring and summer and reversals to turbid conditions. Furthermore, we hypothesize that these contrasting restoration measures result in different macrophyte species composition, with added implications for seasonal dynamics due to differences in plant traits. To test these hypotheses, we analysed data on water quality and submerged macrophytes from 49 north temperate shallow lakes that were in a turbid state and subjected to restoration measures. To study the dynamics of macrophytes during nutrient load reduction, we adapted the ecosystem model PCLake. Our survey and model simulations revealed the existence of an intermediate recovery state upon reduced external nutrient loading, characterised by spring clear-water phases and turbid summers, whereas internal lake restoration measures often resulted in clear-water conditions in spring and summer with returns to turbid conditions after some years. External and internal lake restoration measures resulted in different macrophyte communities. The intermediate recovery state following reduced nutrient loading is characterised by a few macrophyte species (mainly pondweeds) that can resist wave action allowing survival in shallow areas, germinate early in spring, have energy-rich vegetative propagules facilitating rapid initial growth and that can complete their life cycle by early summer. Later in the growing season these plants are, according to our simulations, outcompeted by periphyton, leading to late-summer phytoplankton blooms. Internal lake restoration measures often coincide with a rapid but transient colonisation by hornworts, waterweeds or charophytes. Stable clear-water conditions and a diverse macrophyte flora only occurred decades after external nutrient load reduction or when measures were combined.Additional co-authors: Wolf M. Mooij, Ruurd Noordhuis, Geoff Phillips, Jacqueline Rücker, Hans-Heinrich Schuster, Martin Søndergaard, Sven Teurlincx, Klaus van de Weyer, Ellen van Donk, Arno Waterstraat and Carl D. Saye
Cardiac magnetic resonance T1 and extracellular volume mapping with motion correction and co-registration based on fast elastic image registration
10.1007/s10334-017-0668-2Magnetic Resonance Materials in Physics, Biology and Medicine311115-12
Engineering Corynebacterium glutamicum for isobutanol production
The production of isobutanol in microorganisms has recently been achieved by harnessing the highly active 2-keto acid pathways. Since these 2-keto acids are precursors of amino acids, we aimed to construct an isobutanol production platform in Corynebacterium glutamicum, a well-known amino-acid-producing microorganism. Analysis of this host’s sensitivity to isobutanol toxicity revealed that C. glutamicum shows an increased tolerance to isobutanol relative to Escherichia coli. Overexpression of alsS of Bacillus subtilis, ilvC and ilvD of C. glutamicum, kivd of Lactococcus lactis, and a native alcohol dehydrogenase, adhA, led to the production of 2.6 g/L isobutanol and 0.4 g/L 3-methyl-1-butanol in 48 h. In addition, other higher chain alcohols such as 1-propanol, 2-methyl-1-butanol, 1-butanol, and 2-phenylethanol were also detected as byproducts. Using longer-term batch cultures, isobutanol titers reached 4.0 g/L after 96 h with wild-type C. glutamicum as a host. Upon the inactivation of several genes to direct more carbon through the isobutanol pathway, we increased production by ∼25% to 4.9 g/L isobutanol in a ∆pyc∆ldh background. These results show promise in engineering C. glutamicum for higher chain alcohol production using the 2-keto acid pathways
Cytosolic NADPH balancing in Penicillium chrysogenum cultivated on mixtures of glucose and ethanol
The in vivo flux through the oxidative branch of the pentose phosphate pathway (oxPPP) in Penicillium chrysogenum was determined during growth in glucose/ethanol carbon-limited chemostat cultures, at the same growth rate. Non-stationary 13C flux analysis was used to measure the oxPPP flux. A nearly constant oxPPP flux was found for all glucose/ethanol ratios studied. This indicates that the cytosolic NADPH supply is independent of the amount of assimilated ethanol. The cofactor assignment in the model of van Gulik et al. (Biotechnol Bioeng 68(6):602–618, 2000) was supported using the published genome annotation of P. chrysogenum. Metabolic flux analysis showed that NADPH requirements in the cytosol remain nearly the same in these experiments due to constant biomass growth. Based on the cytosolic NADPH balance, it is known that the cytosolic aldehyde dehydrogenase in P. chrysogenum is NAD + dependent. Metabolic modeling shows that changing the NAD + -aldehyde dehydrogenase to NADP + -aldehyde dehydrogenase can increase the penicillin yield on substrate
First Measurement of the |t| Dependence of Incoherent J/ψ Photonuclear Production
The first measurement of the cross section for incoherent photonuclear production of J/ψ vector mesons as a function of the Mandelstam |t| variable is presented. The measurement was carried out with the ALICE detector at midrapidity, |y|<0.8, using ultraperipheral collisions of Pb nuclei at a center-of-mass energy per nucleon pair of sNN=5.02 TeV. This rapidity interval corresponds to a Bjorken-x range (0.3-1.4)×10-3. Cross sections are given in five |t| intervals in the range 0.04<|t|<1 GeV2 and compared to the predictions by different models. Models that ignore quantum fluctuations of the gluon density in the colliding hadron predict a |t| dependence of the cross section much steeper than in data. The inclusion of such fluctuations in the same models provides a better description of the data
First measurement of coherent ρ0 photoproduction in ultra-peripheral Xe–Xe collisions at √sNN = 5.44 TeV
The first measurement of the coherent photoproduction of ρ0 vector mesons in ultra-peripheral Xe–Xe collisions at sNN=5.44 TeV is presented. This result, together with previous HERA γp data and γ–Pb measurements from ALICE, describes the atomic number (A) dependence of this process, which is particularly sensitive to nuclear shadowing effects and to the approach to the black-disc limit of QCD at a semi-hard scale. The cross section of the Xe+Xe→ρ0+Xe+Xe process, measured at midrapidity through the decay channel ρ0→π+π−, is found to be dσ/dy=131.5±5.6(stat.)−16.9+17.5(syst.) mb. The ratio of the continuum to resonant contributions for the production of pion pairs is also measured. In addition, the fraction of events accompanied by electromagnetic dissociation of either one or both colliding nuclei is reported. The dependence on A of cross section for the coherent ρ0 photoproduction at a centre-of-mass energy per nucleon of the γA system of WγA,n=65 GeV is found to be consistent with a power-law behaviour σ(γA→ρ0A)∝Aα with a slope α=0.96±0.02(syst.). This slope signals important shadowing effects, but it is still far from the behaviour expected in the black-disc limit.publishedVersio
First measurement of Λc+ production down to pT=0 in pp and p-Pb collisions at sNN=5.02 TeV
The production of prompt Lambda+c baryons has been measured at midrapidity in the transverse momentum interval 0 < pT < 1 GeV/c for the first time, in pp and p–Pb collisions at a center-of-mass energy per nucleon-nucleon
collision √s NN = 5.02 TeV. The measurement was performed in the decay channel Lambda+c → pK0S by applying new decay reconstruction techniques using a Kalman-Filter vertexing algorithm and adopting a machine-learning
approach for the candidate selection. The pT -integrated Lambda+c production cross sections in both collision systems were determined and used along with the measured yields in Pb–Pb collisions to compute the pT -integrated
nuclear modification factors R pPb and R AA of Lambda+c baryons, which are compared to model calculations that
consider nuclear modification of the parton distribution functions. The Lambda+c /D0 baryon-to-meson yield ratio is
reported for pp and p–Pb collisions. Comparisons with models that include modified hadronization processes are
presented, and the implications of the results on the understanding of charm hadronization in hadronic collisions
are discussed. A significant (3.7σ ) modification of the mean transverse momentum of Lambda+c baryons is seen in p–Pb collisions with respect to pp collisions, while the pT -integrated Lambda+c /D0 yield ratio was found to be consistent between the two collision systems within the uncertainties
- …
