6,650 research outputs found

    Rotational Diffusion in a Chain of Particles

    Full text link
    We study the coupled rotational diffusion in a two-particle chain on the basis of a Smoluchowski equation and calculate time-correlation functions that are measurable in an experiment. This might be used to explore hydrodynamic interactions in the limit where lubrication theory is valid.Comment: 7 pages, 2 figures, to be published in J. Phys.: Condens. Matte

    Magnetorotational supernovae: a nucleosynthetic analysis of sophisticated 3D models

    Get PDF
    Magnetorotational supernovae are a rare type of core-collapse supernovae where the magnetic field and rotation play a central role in the dynamics of the explosion. We present the post-processed nucleosynthesis of state-of-the-art neutrino-MHD supernova models that follow the post explosion evolution for few seconds. We find three different dynamical mechanisms to produce heavy r-process elements: (i) a prompt ejection of matter right after core bounce, (ii) neutron-rich matter that is ejected at late times due to a reconfiguration of the protoneutronstar shape, (iii) small amount of mass ejected with high entropies in the centre of the jet. We investigate total ejecta yields, including the ones of unstable nuclei such as 26Al, 44Ti, 56Ni, and 60Fe. The obtained 56Ni masses vary between 0.01āˆ’1MāŠ™ā . The latter maximum is compatible with hypernova observations. Furthermore, all of our models synthesize Zn masses in agreement with observations of old metal-poor stars. We calculate simplified light curves to investigate whether our models can be candidates for superluminous supernovae. The peak luminosities obtained from taking into account only nuclear heating reach up to a few āˆ¼1043ergsāˆ’1ā . Under certain conditions, we find a significant impact of the 66Ni decay chain that can raise the peak luminosity up to āˆ¼38 percent compared to models including only the 56Ni decay chain. This work reinforces the theoretical evidence on the critical role of magnetorotational supernovae to understand the occurrence of hypernovae, superluminous supernovae, and the synthesis of heavy elements

    Investigating Differences between Graphical and Textual Declarative Process Models

    Full text link
    Declarative approaches to business process modeling are regarded as well suited for highly volatile environments, as they enable a high degree of flexibility. However, problems in understanding declarative process models often impede their adoption. Particularly, a study revealed that aspects that are present in both imperative and declarative process modeling languages at a graphical level-while having different semantics-cause considerable troubles. In this work we investigate whether a notation that does not contain graphical lookalikes, i.e., a textual notation, can help to avoid this problem. Even though a textual representation does not suffer from lookalikes, in our empirical study it performed worse in terms of error rate, duration and mental effort, as the textual representation forces the reader to mentally merge the textual information. Likewise, subjects themselves expressed that the graphical representation is easier to understand

    Detection of an iron K Emission Line from the LINER NGC 4579

    Full text link
    We present the results of an ASCA observation of the LINER NGC 4579. A point-like X-ray source is detected at the nucleus with a 2-10 keV luminosity of 1.5x10^41 ergs/s assuming a distance of 16.8 Mpc. The X-ray spectrum is represented by a combination of a power-law with a photon index of ~1.7 and soft thermal component with kT~0.9 keV. An iron K emission line is detected at 6.73+/-0.13 keV (rest frame) with an equivalent width of 490 +180/-190 eV and is statistically significant at more than 99.9 % confidence. The line center energy is consistent with Helium-like iron and is significantly higher than 6.4 keV which is expected from fluorescence by "cold" (or a lower ionization state of) iron. The iron line profile shows no significant red tail in contrast to Seyfert 1 galaxies although the statistics are limited. The line center energy, equivalent width, and profile are consistent with an origin in an ionized accretion disk. However the large mass accretion rate necessary to ionize the accretion disk is not consistent with the observed luminosity and normal accretion models.Comment: 15 pages, 5 figures, to appear in The Astrophysical Journa

    Magnetorotational supernovae: a nucleosynthetic analysis of sophisticated 3D models

    Get PDF
    Magnetorotational supernovae are a rare type of core-collapse supernovae where the magnetic field and rotation play a central role in the dynamics of the explosion. We present the post-processed nucleosynthesis of state-of-the-art neutrino-MHD supernova models that follow the post explosion evolution for few seconds. We find three different dynamical mechanisms to produce heavy r-process elements: (i) a prompt ejection of matter right after core bounce, (ii) neutron-rich matter that is ejected at late times due to a reconfiguration of the protoneutronstar shape, (iii) small amount of mass ejected with high entropies in the centre of the jet. We investigate total ejecta yields, including the ones of unstable nuclei such as 26Al, 44Ti, 56Ni, and 60Fe. The obtained 56Ni masses vary between 0.01āˆ’1MāŠ™. The latter maximum is compatible with hypernova observations. Furthermore, all of our models synthesize Zn masses in agreement with observations of old metal-poor stars. We calculate simplified light curves to investigate whether our models can be candidates for superluminous supernovae. The peak luminosities obtained from taking into account only nuclear heating reach up to a few āˆ¼1043ergsāˆ’1. Under certain conditions, we find a significant impact of the 66Ni decay chain that can raise the peak luminosity up to āˆ¼38 percent compared to models including only the 56Ni decay chain. This work reinforces the theoretical evidence on the critical role of magnetorotational supernovae to understand the occurrence of hypernovae, superluminous supernovae, and the synthesis of heavy elements

    Modeling transport through single-molecule junctions

    Full text link
    Non-equilibrium Green's functions (NEGF) formalism combined with extended Huckel (EHT) and charging model are used to study electrical conduction through single-molecule junctions. Analyzed molecular complex is composed of asymmetric 1,4-Bis((2'-para-mercaptophenyl)-ethinyl)-2-acetyl-amino-5-nitro-benzene molecule symmetrically coupled to two gold electrodes [Reichert et al., Phys. Rev. Lett. Vol.88 (2002), pp. 176804]. Owing to this model, the accurate values of the current flowing through such junction can be obtained by utilizing basic fundamentals and coherently deriving model parameters. Furthermore, the influence of the charging effect on the transport characteristics is emphasized. In particular, charging-induced reduction of conductance gap, charging-induced rectification effect and charging-generated negative value of the second derivative of the current with respect to voltage are observed and examined for molecular complex.Comment: 8 pages, 3 figure
    • ā€¦
    corecore