30,849 research outputs found

    Conversion of glassy antiferromagnetic-insulating phase to equilibrium ferromagnetic-metallic phase by devitrification and recrystallization in Al substituted Pr0.5{_{0.5}}Ca0.5_{0.5}MnO3{_3}

    Full text link
    We show that Pr0.5{_{0.5}}Ca0.5_{0.5}MnO3{_3} with 2.5% Al substitution and La0.5{_{0.5}}Ca0.5_{0.5}MnO3{_3} (LCMO) exhibit qualitatively similar and visibly anomalous M-H curves at low temperature. Magnetic field causes a broad first-order but irreversible antiferromagnetic (AF)-insulating (I) to ferromagnetic (FM)-metallic (M) transition in both and gives rise to soft FM state. However, the low temperature equilibrium state of Pr0.5_{0.5}Ca0.5_{0.5}Mn0.975_{0.975}Al0.025_{0.025}O3_3 (PCMAO) is FM-M whereas that of LCMO is AF-I. In both the systems the respective equilibrium phase coexists with the other phase with contrasting order, which is not in equilibrium, and the cooling field can tune the fractions of the coexisting phases. It is shown earlier that the coexisting FM-M phase behaves like `magnetic glass' in LCMO. Here we show from specially designed measurement protocols that the AF-I phase of PCMAO has all the characteristics of magnetic glassy states. It devitrifies on heating and also recrystallizes to equilibrium FM-M phase after annealing. This glass-like AF-I phase also shows similar intriguing feature observed in FM-M magnetic glassy state of LCMO that when the starting coexisting fraction of glass is larger, successive annealing results in larger fraction of equilibrium phase. This similarity between two manganite systems with contrasting magnetic orders of respective glassy and equilibrium phases points toward a possible universality.Comment: Highlights potential of CHUF (Cooling and Heating in Unequal Fields), a new measurement protoco

    Coexisting tuneable fractions of glassy and equilibrium long-range-order phases in manganites

    Get PDF
    Antiferromagnetic-insulating(AF-I) and the ferromagnetic-metallic(FM-M) phases coexist in various half-doped manganites over a range of temperature and magnetic field, and this is often believed to be an essential ingredient to their colossal magnetoresistence. We present magnetization and resistivity measurements on Pr(0.5)Ca(0.5)Mn(0.975)Al(0.025)O(3) and Pr(0.5)Sr(0.5)MnO(3) showing that the fraction of the two coexisting phases at low-temperature in any specified measuring field H, can be continuously controlled by following designed protocols traversing field-temperature space; for both materials the FM-M fraction rises under similar cooling paths. Constant-field temperature variations however show that the former sample undergoes a 1st order transition from AF-I to FM-M with decreasing T, while the latter undergoes the reverse transition. We suggest that the observed path-dependent phase-separated states result from the low-T equilibrium phase coexisting with supercooled glass-like high temperature phase, where the low-T equilibrium phases are actually homogeneous FM-M and AF-I phases respectively for the two materials

    Nuclear Matter Studies with Density-dependent Meson-Nucleon Coupling Constants

    Get PDF
    Due to the internal structure of the nucleon, we should expect, in general, that the effective meson nucleon parameters may change in nuclear medium. We study such changes by using a chiral confining model of the nucleon. We use density-dependent masses for all mesons except the pion. Within a Dirac-Brueckner analysis, based on the relativistic covariant structure of the NN amplitude, we show that the effect of such a density dependence in the NN interaction on the saturation properties of nuclear matter, while not large, is quite significant. Due to the density dependence of the gσNNg_{\sigma NN}, as predicted by the chiral confining model, we find, in particular, a looping behavior of the binding energy at saturation as a function of the saturation density. A simple model is described, which exhibits looping and which is shown to be mainly caused by the presence of a peak in the density dependence of the medium modified σN\sigma N coupling constant at low density. The effect of density dependence of the coupling constants and the meson masses tends to improve the results for E/AE/A and density of nuclear matter at saturation. From the present study we see that the relationship between binding energy and saturation density may not be as universal as found in nonrelativistic studies and that more model dependence is exhibited once medium modifications of the basic nuclear interactions are considered.Comment: Acknowledgements have been modified. 34 pages, revtex, uuencoded gz-compressed tar fil

    On the Spread of Random Interleaver

    Full text link
    For a given blocklength we determine the number of interleavers which have spread equal to two. Using this, we find out the probability that a randomly chosen interleaver has spread two. We show that as blocklength increases, this probability increases but very quickly converges to the value 1−e−2≈0.86471-e^{-2} \approx 0.8647. Subsequently, we determine a lower bound on the probability of an interleaver having spread at least ss. We show that this lower bound converges to the value e−2(s−2)2e^{-2(s-2)^{2}}, as the blocklength increases.Comment: 5 pages, published in Proceedings of IEEE International Symposium on Information Theory 2005, Adelaide, Australi

    Magnetic glass in Shape Memory Alloy : Ni45Co5Mn38Sn12

    Full text link
    The first order martensitic transition in the ferromagnetic shape memory alloy Ni45Co5Mn38Sn12 is also a magnetic transition and has a large field induced effect. While cooling in the presence of field this first order magnetic martensite transition is kinetically arrested. Depending on the cooling field, a fraction of the arrested ferromagnetic austenite phase persists down to the lowest temperature as a magnetic glassy state, similar to the one observed in various intermetallic alloys and in half doped manganites. A detailed investigation of this first order ferromagnetic austenite (FM-A) to low magnetization martensite (LM-M) state transition as a function of temperature and field has been carried out by magnetization measurements. Extensive cooling and heating in unequal field (CHUF) measurements and a novel field cooled protocol for isothermal MH measurements (FC-MH) are utilized to investigate the glass like arrested states and show a reverse martensite transition. Finally, we determine a field -temperature (HT) phase diagram of Ni45Co5Mn38Sn12 from various magnetization measurements which brings out the regions where thermodynamic and metastable states co-exist in the HT space clearly depicting this system as a 'Magnetic Glass'.Comment: Magnetic field tunes kinetic arrest and CHUF shows devitrification and melting of Magnetic glas
    • …
    corecore