1,166 research outputs found
Bounds on Bess Model Parameters from Vector-Boson Production in e+e- Collisions
The BESS model is the Higgs-less alternative to the standard model of
electroweak interaction, based on nonlinearly realized spontaneous symmetry
breaking. Since it is nonrenormalizable, new couplings (not existing in the SM)
are induced at each loop order. On the basis of the one loop induced
vector-boson self-couplings we study the two- and three-vector-boson-production
processes in collisions at , the expected energy of
the next linear collider (NLC). Assuming that NLC results will agree
with the SM predictions within given accuracy we identify the bounds for the
free parameters of the BESS model.Comment: December 1992, 8 pages LaTeX, 6 figures (not included but available
on request), BI-TP 92/59, LMU-92/1
Using Simulated Annealing to Solve the Daily Drayage Problem with Hard Time Windows
Drayage is the stage of the intermodal transport that deals with transport
of freight on trucks among the intermodal terminal, and customers and suppliers that are located in its hinterland. This work proposes an algorithm based on simulated annealing heuristics to solve the operations of drayage. This algorithm has been used to solve battery problems, demonstrating the validity and suitability of its results, which were compared with exact method
The Equivalence Theorem and Effective Lagrangians
We point out that the equivalence theorem, which relates the amplitude for a
process with external longitudinally polarized vector bosons to the amplitude
in which the longitudinal vector bosons are replaced by the corresponding
pseudo-Goldstone bosons, is not valid for effective Lagrangians. However, a
more general formulation of this theorem also holds for effective interactions.
The generalized theorem can be utilized to determine the high-energy behaviour
of scattering processes just by power counting and to simplify the calculation
of the corresponding amplitudes. We apply this method to the phenomenologically
most interesting terms describing effective interactions of the electroweak
vector and Higgs bosons in order to examine their effects on vector-boson
scattering and on vector-boson-pair production in annihilation. The
use of the equivalence theorem in the literature is examined.Comment: 20 pages LaTeX, BI-TP 94/1
The Progressive Crtitique of the Current Socia-legal Landscape Corporations and Economic Justice
The Progressive Crtitique of the Current Socia-legal Landscape Corporations and Economic Justice
Common Variants at 10 Genomic Loci Influence Hemoglobin A(1C) Levels via Glycemic and Nonglycemic Pathways
OBJECTIVE Glycated hemoglobin (HbA1c), used to monitor and diagnose diabetes, is influenced by average glycemia over a 2- to 3-month period. Genetic factors affecting expression, turnover, and abnormal glycation of hemoglobin could also be associated with increased levels of HbA1c. We aimed to identify such genetic factors and investigate the extent to which they influence diabetes classification based on HbA1c levels.
RESEARCH DESIGN AND METHODS We studied associations with HbA1c in up to 46,368 nondiabetic adults of European descent from 23 genome-wide association studies (GWAS) and 8 cohorts with de novo genotyped single nucleotide polymorphisms (SNPs). We combined studies using inverse-variance meta-analysis and tested mediation by glycemia using conditional analyses. We estimated the global effect of HbA1c loci using a multilocus risk score, and used net reclassification to estimate genetic effects on diabetes screening.
RESULTS Ten loci reached genome-wide significant association with HbA1c, including six new loci near FN3K (lead SNP/P value, rs1046896/P = 1.6 × 10−26), HFE (rs1800562/P = 2.6 × 10−20), TMPRSS6 (rs855791/P = 2.7 × 10−14), ANK1 (rs4737009/P = 6.1 × 10−12), SPTA1 (rs2779116/P = 2.8 × 10−9) and ATP11A/TUBGCP3 (rs7998202/P = 5.2 × 10−9), and four known HbA1c loci: HK1 (rs16926246/P = 3.1 × 10−54), MTNR1B (rs1387153/P = 4.0 × 10−11), GCK (rs1799884/P = 1.5 × 10−20) and G6PC2/ABCB11 (rs552976/P = 8.2 × 10−18). We show that associations with HbA1c are partly a function of hyperglycemia associated with 3 of the 10 loci (GCK, G6PC2 and MTNR1B). The seven nonglycemic loci accounted for a 0.19 (% HbA1c) difference between the extreme 10% tails of the risk score, and would reclassify ∼2% of a general white population screened for diabetes with HbA1c.
CONCLUSIONS GWAS identified 10 genetic loci reproducibly associated with HbA1c. Six are novel and seven map to loci where rarer variants cause hereditary anemias and iron storage disorders. Common variants at these loci likely influence HbA1c levels via erythrocyte biology, and confer a small but detectable reclassification of diabetes diagnosis by HbA1c
The impact of low-frequency and rare variants on lipid levels
Using a genome-wide screen of 9.6 million genetic variants achieved through 1000 Genomes Project imputation in 62,166 samples, we identify association to lipid traits in 93 loci, including 79 previously identified loci with new lead SNPs and 10 new loci, 15 loci with a low-frequency lead SNP and 10 loci with a missense lead SNP, and 2 loci with an accumulation of rare variants. In six loci, SNPs with established function in lipid genetics (CELSR2, GCKR, LIPC and APOE) or candidate missense mutations with predicted damaging function (CD300LG and TM6SF2) explained the locus associations. The low-frequency variants increased the proportion of variance explained, particularly for low-density lipoprotein cholesterol and total cholesterol. Altogether, our results highlight the impact of low-frequency variants in complex traits and show that imputation offers a cost-effective alternative to resequencing
Discovery and fine-mapping of glycaemic and obesity-related trait loci using high-density imputation
Reference panels from the 1000 Genomes (1000G) Project Consortium provide near complete coverage of common and low-frequency genetic variation with minor allele frequency ≥0.5% across European ancestry populations. Within the European Network for Genetic and Genomic Epidemiology (ENGAGE) Consortium, we have undertaken the first large-scale meta-analysis of genome-wide association studies (GWAS), supplemented by 1000G imputation, for four quantitative glycaemic and obesity-related traits, in up to 87,048 individuals of European ancestry. We identified two loci for body mass index (BMI) at genome-wide significance, and two for fasting glucose (FG), none of which has been previously reported in larger meta-analysis efforts to combine GWAS of European ancestry. Through conditional analysis, we also detected multiple distinct signals of association mapping to established loci for waist-hip ratio adjusted for BMI (RSPO3) and FG (GCK and G6PC2). The index variant for one association signal at the G6PC2 locus is a low-frequency coding allele, H177Y, which has recently been demonstrated to have a functional role in glucose regulation. Fine-mapping analyses revealed that the non-coding variants most likely to drive association signals at established and novel loci were enriched for overlap with enhancer elements, which for FG mapped to promoter and transcription factor binding sites in pancreatic islets, in particular. Our study demonstrates that 1000G imputation and genetic fine-mapping of common and low-frequency variant association signals at GWAS loci, integrated with genomic annotation in relevant tissues, can provide insight into the functional and regulatory mechanisms through which their effects on glycaemic and obesity-related traits are mediated
- …
