13 research outputs found
Modelling human choices: MADeM and decision‑making
Research supported by FAPESP 2015/50122-0 and DFG-GRTK 1740/2. RP and AR are also part of the Research, Innovation and Dissemination Center for Neuromathematics FAPESP grant (2013/07699-0). RP is supported by a FAPESP scholarship (2013/25667-8). ACR is partially supported by a CNPq fellowship (grant 306251/2014-0)
Optical property tuning of single-wall carbon nanotubes by endohedral encapsulation of a wide variety of dielectric molecules
Specific and tunable modification to the optical properties of single-wall carbon nanotubes (SWCNTs) is demonstrated through direct encapsulation into the nanotube interior of guest molecules with widely varying static dielectric constants. Filled through simple ingestion of the guest molecule, each SWCNT population is demonstrated to display a robust modification to absorbance, fluorescence, and Raman spectra. Over 30 distinct compounds, covering static dielectric constants from 1.8 to 109, are inserted in large diameter SWCNTs (d = 1.104−1.524 nm) and more than 10 compounds in small diameter SWCNTs (d = 0.747−1.153 nm), demonstrating that the general effect of filler dielectric on the nanotube optical properties is a monotonic energy reduction (red-shifting) of the optical transitions with increased magnitude of the dielectric constant. Systematic fitting of the twodimensional fluorescence−excitation and Raman spectra additionally enables determination of the critical filling diameter for each molecule and distinguishing of overall trends from specific guest−host interactions. Comparisons to predictions from existing theory are presented, and specific guest molecule/SWCNT chirality combinations that disobey the general trend and theory are identified. A general increase of the fluorescence intensity and line narrowing is observed for low dielectric constants, with long linear alkane filled SWCNTs exhibiting emission intensities approaching those of empty SWCNTs. These results demonstrate an exploitable modulation in the optical properties of SWCNTs and provide a foundation for examining higher-order effects, such as due to nonbulk-like molecule stacking, in host−guest interactions in well-controlled nanopore size materials
Low doses of cholera toxin and its mediator cAMP induce CTLA-2 secretion by dendritic cells to enhance regulatory T cell conversion
Immature or semi-mature dendritic cells (DCs) represent tolerogenic maturation stages that can convert naive T cells into Foxp3 induced regulatory T cells (iTreg). Here we found that murine bone marrow-derived DCs (BM-DCs) treated with cholera toxin (CT) matured by up-regulating MHC-II and costimulatory molecules using either high or low doses of CT (CT, CT) or with cAMP, a known mediator CT signals. However, all three conditions also induced mRNA of both isoforms of the tolerogenic molecule cytotoxic T lymphocyte antigen 2 (CTLA-2α and CTLA-2β). Only DCs matured under CT conditions secreted IL-1β, IL-6 and IL-23 leading to the instruction of Th17 cell polarization. In contrast, CT- or cAMP-DCs resembled semi-mature DCs and enhanced TGF-β-dependent Foxp3 iTreg conversion. iTreg conversion could be reduced using siRNA blocking of CTLA-2 and reversely, addition of recombinant CTLA-2α increased iTreg conversion in vitro. Injection of CT- or cAMP-DCs exerted MOG peptide-specific protective effects in experimental autoimmune encephalomyelitis (EAE) by inducing Foxp3 Tregs and reducing Th17 responses. Together, we identified CTLA-2 production by DCs as a novel tolerogenic mediator of TGF-β-mediated iTreg induction in vitro and in vivo. The CT-induced and cAMP-mediated up-regulation of CTLA-2 also may point to a novel immune evasion mechanism of Vibrio cholerae