19 research outputs found

    Literature-based discovery of diabetes- and ROS-related targets

    Get PDF
    Abstract Background Reactive oxygen species (ROS) are known mediators of cellular damage in multiple diseases including diabetic complications. Despite its importance, no comprehensive database is currently available for the genes associated with ROS. Methods We present ROS- and diabetes-related targets (genes/proteins) collected from the biomedical literature through a text mining technology. A web-based literature mining tool, SciMiner, was applied to 1,154 biomedical papers indexed with diabetes and ROS by PubMed to identify relevant targets. Over-represented targets in the ROS-diabetes literature were obtained through comparisons against randomly selected literature. The expression levels of nine genes, selected from the top ranked ROS-diabetes set, were measured in the dorsal root ganglia (DRG) of diabetic and non-diabetic DBA/2J mice in order to evaluate the biological relevance of literature-derived targets in the pathogenesis of diabetic neuropathy. Results SciMiner identified 1,026 ROS- and diabetes-related targets from the 1,154 biomedical papers (http://jdrf.neurology.med.umich.edu/ROSDiabetes/). Fifty-three targets were significantly over-represented in the ROS-diabetes literature compared to randomly selected literature. These over-represented targets included well-known members of the oxidative stress response including catalase, the NADPH oxidase family, and the superoxide dismutase family of proteins. Eight of the nine selected genes exhibited significant differential expression between diabetic and non-diabetic mice. For six genes, the direction of expression change in diabetes paralleled enhanced oxidative stress in the DRG. Conclusions Literature mining compiled ROS-diabetes related targets from the biomedical literature and led us to evaluate the biological relevance of selected targets in the pathogenesis of diabetic neuropathy.http://deepblue.lib.umich.edu/bitstream/2027.42/78315/1/1755-8794-3-49.xmlhttp://deepblue.lib.umich.edu/bitstream/2027.42/78315/2/1755-8794-3-49-S7.XLShttp://deepblue.lib.umich.edu/bitstream/2027.42/78315/3/1755-8794-3-49-S10.XLShttp://deepblue.lib.umich.edu/bitstream/2027.42/78315/4/1755-8794-3-49-S8.XLShttp://deepblue.lib.umich.edu/bitstream/2027.42/78315/5/1755-8794-3-49-S3.XLShttp://deepblue.lib.umich.edu/bitstream/2027.42/78315/6/1755-8794-3-49-S1.XLShttp://deepblue.lib.umich.edu/bitstream/2027.42/78315/7/1755-8794-3-49-S4.XLShttp://deepblue.lib.umich.edu/bitstream/2027.42/78315/8/1755-8794-3-49-S2.XLShttp://deepblue.lib.umich.edu/bitstream/2027.42/78315/9/1755-8794-3-49-S12.XLShttp://deepblue.lib.umich.edu/bitstream/2027.42/78315/10/1755-8794-3-49-S11.XLShttp://deepblue.lib.umich.edu/bitstream/2027.42/78315/11/1755-8794-3-49-S9.XLShttp://deepblue.lib.umich.edu/bitstream/2027.42/78315/12/1755-8794-3-49-S5.XLShttp://deepblue.lib.umich.edu/bitstream/2027.42/78315/13/1755-8794-3-49-S6.XLShttp://deepblue.lib.umich.edu/bitstream/2027.42/78315/14/1755-8794-3-49.pdfPeer Reviewe

    INTRACELLULAR SIGNALING TRIGGERED BY FORMYL PEPTIDE RECEPTORS IN NONPHAGOCYTIC CELLS

    No full text
    Formyl-peptide receptors (FPR) are expressed in several cell types including phagocytic leukocytes, and a wide variety of agonists of FPR and of its FPRL1 variant have been identified. These ligands interact with their specific receptors on the cellular membrane, and activate specific biological functions through a G-protein- coupled pathway. In nonphagocytic cells, agonist/FPR binding also induces transactivation of the constitutive membrane receptors PDGF-R, EGF-R and uPAR that in turn trigger specific, characteristic intracellular signal transduction pathways. The second messengers resulting from the interaction between ligands and formyl- peptide receptors act on various intracellular kinases (mitogen-activated protein kinases, protein kinases C and B, Jun kinase and some tyrosine kinases). Activation of NADPH oxidase expressed in nonphagocytic cells, and phosphorylation and nuclear translocation of regulatory transcriptional factors may be the downstream targets of this signaling cascade. The activated signal transduction pathways also lead to various biochemical cellular responses that can contribute to cell proliferation, and can protect against cell death and the malignant behavior of several human cancer cell lines. Dissection of the signaling cascade triggered by different agonists will shed light on the role of FPRs in nonphagocytic cells in both human physiology and diseases

    FPRL1-mediated induction of superoxide in LL-37-stimulated IMR human fibroblasts

    No full text
    Molecular mechanisms underlying the generation of reactive oxygen species in LL-37-stimulated cells are poorly understood. Previously we demonstrated that in human fibroblasts the exposure to WKYMVm induced p47phox phosphorylation and translocation and, in turn, NADPH oxidase activation. These effects were mediated by the activation of the Formyl-peptide receptor-like 1 (FPRL1) and the downstream signaling involved ERKs phosphorylation and PKCα- and PKCδ- activation. Since LL-37 uses FPRL1 as a receptor to mediate its action on several cell types, we investigated in LL-37-stimulated IMR90 cells molecular mechanisms involved in NADPH-dependent superoxide generation. The exposure to LL-37, which is expressed in fibroblasts, induced ERKs activation, p47phox phosphorylation and translocation as well as NADPH oxidase activation. These effects were prevented by pertussis toxin, PD098059 and WRWWWW, a FPRL1-selective antagonist. Furthermore, the stimulation with LL-37 of HEK293 cells, transfected to stably express FPRL1, induced a rapid activation of ERKs and p47phox phosphorylation

    PROTEIN KINASE C-ALPHA AND -DELTA ARE REQUIRED FOR NADPH OXIDASE ACTIVATION IN WKYMVm-STIMULATED IMR90 HUMAN FIBROBLASTS

    No full text
    The regulation of the activation of non phagocytic NADPH oxidase is poorly understood. Previously we demonstrated that in fibroblasts the exposure to WKYMVm induced p47phox phosphorylation and translocation and that these effects were mediated by ERKs activation. Protein kinase C (PKC) is reported to be involved in regulating the phosphorylation of NADPH oxidase components in polymorphonucleate cells stimulated via FPRL1 receptor, but its involvement in fibroblasts was not demonstrated. Therefore, we investigated in IMR90 cells exposed to WKYMVm the role of PKC isoenzymes in the activation of NADPH oxidase-like enzyme. Preincubation with general pharmacological inhibitors of PKC, before stimulation with WKYMVm, prevented the ERKs activation, p47phox phosphorylation and translocation. The analysis of cellular partitioning of PKC isoenzymes demonstrated that PKCa and PKCd translocated from the cytosolic to the membrane fraction upon stimulation with WKYMVm. Preincubation with Go6976 or with rottlerin prevented the phosphorylation and translocation of NADPH oxidase regulatory subunit

    NADPH-oxidase-dependent reactive oxygen species mediate EGFR transactivation by FPRL1 in WKYMVm-stimulated human lung cancer cells

    No full text
    Cross talk between unrelated cell surface receptors, such as G-protein-coupled receptors (GPCR) and receptor tyrosine kinases (RTK), is a crucial signaling mechanism to expand the cellular communication network. We investigated the ability of the GPCR formyl peptide receptor-like 1 (FPRL1) to transactivate the RTK epidermal growth factor receptor (EGFR) in CaLu-6 cells. We observed that stimulation with WKYMVm, an FPRL1 agonist isolated by screening synthetic peptide libraries, induces EGFR tyrosine phosphorylation, p47phox phosphorylation, NADPH-oxidase-dependent superoxide generation, and c-Src kinase activity. As a result of EGFR transactivation, phosphotyrosine residues provide docking sites for recruitment and triggering of the STAT3 pathway.WKYMVm-inducedEGFRtransactivation is prevented by the FPRL1-selective antagonistWRWWWW, by pertussis toxin (PTX), and by the c-Src inhibitor PP2. The critical role of NADPH-oxidase-dependent superoxide generation in this cross-talk mechanism is corroborated by the finding that apocynin or a siRNA against p22phox prevents EGFR transactivation and c-Src kinase activity. In addition, WKYMVm promotes CaLu-6 cell growth, which is prevented by PTX and by WRWWWW. These results highlight the role of FPRL1 as a potential target of new drugs and suggest that targeting both FPRL1 and EGFR may yield superior therapeutic effects compared with targeting either receptor separately

    Imbricatolic acid from Juniperus communis L. prevents cell cycle progression in CaLu-6 cells

    No full text
    Imbricatolic acid was isolated from the methanolic extract of the fresh ripe berries of Juniperus communis (Cupressaceae) together with sixteen known compounds and a new dihydrobenzofuran lignan glycoside named juniperoside A. Their structures were determined by spectroscopic methods and by comparison with the spectral data reported in literature. Imbricatolic acid was evaluated for its ability to prevent cell cycle progression in p53-null CaLu-6 cells. This compound induces the upregulation of cyclin-dependent kinase inhibitors and their accumulation in the G1 phase of the cell cycle, as well as the degradation of cyclins A, D1, and E1. Furthermore, no significant imbricatolic acid-induced apoptosis was observed. Therefore, this plant-derived compound may play a role in the control of cell cycle
    corecore