1,719 research outputs found
A Spin - 3/2 Ising Model on a Square Lattice
The spin - 3/2 Ising model on a square lattice is investigated. It is shown
that this model is reducible to an eight - vertex model on a surface in the
parameter space spanned by coupling constants J, K, L and M. It is shown that
this model is equivalent to an exactly solvable free fermion model along two
lines in the parameter space.Comment: LaTeX, 7 pages, 1 figure upon request; JETP Letters, in pres
A Class of Exact Solutions of the Wheeler -- De Witt Equation
After carefully regularizing the Wheeler -- De Witt operator, which is the
Hamiltonian operator of canonical quantum gravity, we find a class of exact
solutions of the Wheeler -- De Witt equation.Comment: 9 pages, Latex, (one reference and one conclusion added, minor
corrections in the formulae
Exact location of the multicritical point for finite-dimensional spin glasses: A conjecture
We present a conjecture on the exact location of the multicritical point in
the phase diagram of spin glass models in finite dimensions. By generalizing
our previous work, we combine duality and gauge symmetry for replicated random
systems to derive formulas which make it possible to understand all the
relevant available numerical results in a unified way. The method applies to
non-self-dual lattices as well as to self dual cases, in the former case of
which we derive a relation for a pair of values of multicritical points for
mutually dual lattices. The examples include the +-J and Gaussian Ising spin
glasses on the square, hexagonal and triangular lattices, the Potts and Z_q
models with chiral randomness on these lattices, and the three-dimensional +-J
Ising spin glass and the random plaquette gauge model.Comment: 27 pages, 3 figure
Critical phase of a magnetic hard hexagon model on triangular lattice
We introduce a magnetic hard hexagon model with two-body restrictions for
configurations of hard hexagons and investigate its critical behavior by using
Monte Carlo simulations and a finite size scaling method for discreate values
of activity. It turns out that the restrictions bring about a critical phase
which the usual hard hexagon model does not have. An upper and a lower critical
value of the discrete activity for the critical phase of the newly proposed
model are estimated as 4 and 6, respectively.Comment: 11 pages, 8 Postscript figures, uses revtex.st
Yield and Quality of Sugarcane as Affected by Phosphate Applied Cation on Soils of Various Phosphorus Levels
Effects of phosphate application on the growth, yield and quality of sugarcane (Saccharum officinarum L.) were studied on the soils having various phosphorus levels. Superphosphate was applied to bring the available soil P at 5, 15, 25 and 35 mg P2O5 100 g-1 designated as A, B, C and D levels, respectively. Leaf area index (LAI) and dry matter increased on the higher P plots over the lower P plots. The highest cane yield (74 t ha-1) and sugar yield (10.2 t ha- 1) were obtained from the B plot and the lowest cane yield (51 t ha-1) and sugar yield (6.9 t ha-1) were from the A plot. The D plot failed to give the highest cane and sugar yield due to lower millable canes accompanied with poor juice quality. Heavy P application showed bad effects on leaf quality by decreasing N, K, Zn and Cu contents
Linear Embedding-based High-dimensional Batch Bayesian Optimization without Reconstruction Mappings
The optimization of high-dimensional black-box functions is a challenging
problem. When a low-dimensional linear embedding structure can be assumed,
existing Bayesian optimization (BO) methods often transform the original
problem into optimization in a low-dimensional space. They exploit the
low-dimensional structure and reduce the computational burden. However, we
reveal that this approach could be limited or inefficient in exploring the
high-dimensional space mainly due to the biased reconstruction of the
high-dimensional queries from the low-dimensional queries. In this paper, we
investigate a simple alternative approach: tackling the problem in the original
high-dimensional space using the information from the learned low-dimensional
structure. We provide a theoretical analysis of the exploration ability.
Furthermore, we show that our method is applicable to batch optimization
problems with thousands of dimensions without any computational difficulty. We
demonstrate the effectiveness of our method on high-dimensional benchmarks and
a real-world function
Development of a New Type Personal Dosemeter with Silicon Detector
éć§ăăŒăžăç”äșăăŒăž: ććäœăźăăŒăžä»
Naive mean field approximation for image restoration
We attempt image restoration in the framework of the Baysian inference.
Recently, it has been shown that under a certain criterion the MAP (Maximum A
Posterior) estimate, which corresponds to the minimization of energy, can be
outperformed by the MPM (Maximizer of the Posterior Marginals) estimate, which
is equivalent to a finite-temperature decoding method. Since a lot of
computational time is needed for the MPM estimate to calculate the thermal
averages, the mean field method, which is a deterministic algorithm, is often
utilized to avoid this difficulty. We present a statistical-mechanical analysis
of naive mean field approximation in the framework of image restoration. We
compare our theoretical results with those of computer simulation, and
investigate the potential of naive mean field approximation.Comment: 9 pages, 11 figure
Global Bethe lattice consideration of the spin-1 Ising model
The spin-1 Ising model with bilinear and biquadratic exchange interactions
and single-ion crystal field is solved on the Bethe lattice using exact
recursion equations. The general procedure of critical properties investigation
is discussed and full set of phase diagrams are constructed for both positive
and negative biquadratic couplings. In latter case we observe all remarkable
features of the model, uncluding doubly-reentrant behavior and ferrimagnetic
phase. A comparison with the results of other approximation schemes is done.Comment: Latex, 11 pages, 13 ps figures available upon reques
Monte Carlo Study of the Anisotropic Heisenberg Antiferromagnet on the Triangular Lattice
We report a Monte Carlo study of the classical antiferromagnetic Heisenberg
model with easy axis anisotropy on the triangular lattice. Both the free energy
cost for long wavelength spin waves as well as for the formation of free
vortices are obtained from the spin stiffness and vorticity modulus
respectively. Evidence for two distinct Kosterlitz-Thouless types of
defect-mediated phase transitions at finite temperatures is presented.Comment: 8 pages, 10 figure
- âŠ