3,773 research outputs found
Caustic Crossing Microlensing Event by Binary MACHOs and Time Scale Bias
Caustic crossing microlensing events provide us a unique opportunity to
measure the relative proper motion of the lens to the source, and so those
caused by binary MACHOs are of great importance for understanding the structure
of the Galactic halo and the nature of MACHOs. The microlensing event
98-SMC-01, occurred in June 1998, is the first event for which the proper
motion is ever measured through the caustic crossing, and this event may be
caused by binary MACHOs as we argue in this Letter. Motivated by the possible
existence of binary MACHOs, we have performed the Monte Carlo simulations of
caustic crossing events by binary MACHOs and investigated the properties and
detectability of the events. Our calculation shows that typical caustic
crossing events have the interval between two caustic crossings ()
of about 5 days. We argue that with the current strategy of binary event search
the proper motions of these typical events are not measurable because of the
short time scale. Therefore the proper motion distribution measured from
caustic crossing events suffers significantly from {`}time scale bias{'}, which
is a bias toward finding long time scale events and hence slowly moving lenses.
We predict there are two times more short time scale events (
days) than long time scale events ( days), and propose an
hourly monitoring observation instead of the nightly monitoring currently
undertaken to detect caustic crossing events by binary MACHOs more efficiently.Comment: 8 pages and 3 figures, accepted for publication in ApJ Letter
Reflections on the Utility of the Retina as a Biomarker for Alzheimer's Disease: A Literature Review.
As a part of the central nervous system, the retina may reflect both physiologic processes and abnormalities related to diseases of the brain. Indeed, a concerted effort has been put forth to understand how Alzheimer's disease (AD) pathology may manifest in the retina as a means to assess the state of the AD brain. The development and refinement of ophthalmologic techniques for studying the retina in vivo have produced evidence of retinal degeneration in AD diagnosed patients. In this review, we will discuss retinal imaging techniques implemented to study the changes in AD retina as well as highlight the recent efforts made to correlate such findings to other clinical hallmarks of AD to assess the viability of the retina as a biomarker for AD
New effective interaction for -shell nuclei and its implications for the stability of the ==28 closed core
The effective interaction GXPF1 for shell-model calculations in the full
shell is tested in detail from various viewpoints such as binding energies,
electro-magnetic moments and transitions, and excitation spectra. The
semi-magic structure is successfully described for or Z=28 nuclei,
Mn, Fe, Co and Ni, suggesting the
existence of significant core-excitations in low-lying non-yrast states as well
as in high-spin yrast states. The results of odd-odd nuclei, Co
and Cu, also confirm the reliability of GXPF1 interaction in the isospin
dependent properties. Studies of shape coexistence suggest an advantage of
Monte Carlo Shell Model over conventional calculations in cases where
full-space calculations still remain too large to be practical.Comment: 29pages, 26figures, to be published in Physical Review
The Mass-to-Light Ratio of Binary Galaxies
We report on the mass-to-light ratio determination based on a newly selected
binary galaxy sample, which includes a large number of pairs whose separations
exceed a few hundred kpc. The probability distributions of the projected
separation and the velocity difference have been calculated considering the
contamination of optical pairs, and the mass-to-light ratio has been determined
based on the maximum likelihood method. The best estimate of in the B
band for 57 pairs is found to be 28 36 depending on the orbital
parameters and the distribution of optical pairs (solar unit, km
s Mpc). The best estimate of for 30 pure spiral pairs is
found to be 12 16. These results are relatively smaller than those
obtained in previous studies, but consistent with each other within the errors.
Although the number of pairs with large separation is significantly increased
compared to previous samples, does not show any tendency of increase, but
found to be almost independent of the separation of pairs beyond 100 kpc. The
constancy of beyond 100 kpc may indicate that the typical halo size of
spiral galaxies is less than kpc.Comment: 18 pages + 8 figures, to appear in ApJ Vol. 516 (May 10
Effective interaction for pf-shell nuclei
An effective interaction is derived for use in the full pf basis. Starting
from a realistic G-matrix interaction, 195 two-body matrix elements and 4
single-particle energies are determined by fitting to 699 energy data in the
mass range 47 to 66. The derived interaction successfully describes various
structures of pf-shell nuclei. As examples, systematics of the energies of the
first 2+ states in the Ca, Ti, Cr, Fe, and Ni isotope chains and energy levels
of 56,57,58Ni are presented. The appearance of a new magic number 34 is seen.Comment: 5 pages, 4 figures, to be published in Phys. Rev.
MACHO Mass Determination Based on Space Telescope Observation
We investigate the possibility of lens mass determination for a caustic
crossing microlensing event based on a space telescope observation. We
demonstrate that the parallax due to the orbital motion of a space telescope
causes a periodic fluctuation of the light curve, from which the lens distance
can be derived. Since the proper motion of the lens relative to the source is
also measurable for a caustic crossing event, one can find a full solution for
microlensing properties of the event, including the lens mass. To determine the
lens mass with sufficient accuracy, the light curve near the caustic crossing
should be observed within uncertainty of 1%. We argue that the Hubble
Space Telescope observation of the caustic crossing supplied with ground-based
observations of the full light curve will enable us to determine the mass of
MACHOs, which is crucial for understanding the nature of MACHOs.Comment: 9 pages + 3 figures, accepted for publication in ApJ Letter
Dp-branes, NS5-branes and U-duality from nonabelian (2,0) theory with Lie 3-algebra
We derive the super Yang-Mills action of Dp-branes on a torus T^{p-4} from
the nonabelian (2,0) theory with Lie 3-algebra. Our realization is based on Lie
3-algebra with pairs of Lorentzian metric generators. The resultant theory then
has negative norm modes, but it results in a unitary theory by setting VEV's of
these modes. This procedure corresponds to the torus compactification,
therefore by taking a transformation which is equivalent to T-duality, the
Dp-brane action is obtained. We also study type IIA/IIB NS5-brane and
Kaluza-Klein monopole systems by taking other VEV assignments. Such various
compactifications can be realized in the nonabelian (2,0) theory, since both
longitudinal and transverse directions can be compactified, which is different
from the BLG theory. We finally discuss U-duality among these branes, and show
that most of the moduli parameters in U-duality group are recovered. Especially
in D5-brane case, the whole U-duality relation is properly reproduced.Comment: 1+26 page
A Note on Bimodal Accretion Disks
The existence of bimodal disks is investigated. Following a simple argument
based on energetic considerations we show that stationary, bimodal accretion
disk models in which a Shakura--Sunyaev disk (SSD) at large radii matches an
advection dominated accretion flow (ADAF) at smaller radii are never possible
using the standard slim disk approach, unless some extra energy flux is
present. The same argument, however, predicts the possibility of a transition
from an outer Shapiro--Lightman--Eardley (SLE) disk to an ADAF, and from a SLE
disk to a SSD. Both types of solutions have been found.Comment: 9 pages including 9 figures, accepted for publication in The
Astrophysical Journa
Nuclear Shell Model by the Quantum Monte Carlo Diagonalization Method
The feasibility of shell-model calculations is radically extended by the
Quantum Monte Carlo Diagonalization method with various essential improvements.
The major improvements are made in the sampling for the generation of
shell-model basis vectors, and in the restoration of symmetries such as angular
momentum and isospin. Consequently the level structure of low-lying states can
be studied with realistic interactions. After testing this method on Mg,
we present first results for energy levels and properties of Ge,
indicating its large and -soft deformation.Comment: 12 pages, RevTex, 2 figures, to be published in Physical Review
Letter
- …