20,501 research outputs found

    Elliptic instability in the Lagrangian-averaged Euler-Boussinesq-alpha equations

    Full text link
    We examine the effects of turbulence on elliptic instability of rotating stratified incompressible flows, in the context of the Lagragian-averaged Euler-Boussinesq-alpha, or \laeba, model of turbulence. We find that the \laeba model alters the instability in a variety of ways for fixed Rossby number and Brunt-V\"ais\"al\"a frequency. First, it alters the location of the instability domains in the (γ,cosθ)(\gamma,\cos\theta)-parameter plane, where θ\theta is the angle of incidence the Kelvin wave makes with the axis of rotation and γ\gamma is the eccentricity of the elliptic flow, as well as the size of the associated Lyapunov exponent. Second, the model shrinks the width of one instability band while simultaneously increasing another. Third, the model introduces bands of unstable eccentric flows when the Kelvin wave is two-dimensional. We introduce two similarity variables--one is a ratio of the Brunt-V\"ais\"al\"a frequency to the model parameter Υ0=1+α2β2\Upsilon_0 = 1+\alpha^2\beta^2, and the other is the ratio of the adjusted inverse Rossby number to the same model parameter. Here, α\alpha is the turbulence correlation length, and β\beta is the Kelvin wave number. We show that by adjusting the Rossby number and Brunt-V\"ais\"al\"a frequency so that the similarity variables remain constant for a given value of Υ0\Upsilon_0, turbulence has little effect on elliptic instability for small eccentricities (γ1)(\gamma \ll 1). For moderate and large eccentricities, however, we see drastic changes of the unstable Arnold tongues due to the \laeba model.Comment: 23 pages (sigle spaced w/figure at the end), 9 figures--coarse quality, accepted by Phys. Fluid

    A stochastic large deformation model for computational anatomy

    Get PDF
    In the study of shapes of human organs using computational anatomy, variations are found to arise from inter-subject anatomical differences, disease-specific effects, and measurement noise. This paper introduces a stochastic model for incorporating random variations into the Large Deformation Diffeomorphic Metric Mapping (LDDMM) framework. By accounting for randomness in a particular setup which is crafted to fit the geometrical properties of LDDMM, we formulate the template estimation problem for landmarks with noise and give two methods for efficiently estimating the parameters of the noise fields from a prescribed data set. One method directly approximates the time evolution of the variance of each landmark by a finite set of differential equations, and the other is based on an Expectation-Maximisation algorithm. In the second method, the evaluation of the data likelihood is achieved without registering the landmarks, by applying bridge sampling using a stochastically perturbed version of the large deformation gradient flow algorithm. The method and the estimation algorithms are experimentally validated on synthetic examples and shape data of human corpora callosa

    Two-component {CH} system: Inverse Scattering, Peakons and Geometry

    Full text link
    An inverse scattering transform method corresponding to a Riemann-Hilbert problem is formulated for CH2, the two-component generalization of the Camassa-Holm (CH) equation. As an illustration of the method, the multi - soliton solutions corresponding to the reflectionless potentials are constructed in terms of the scattering data for CH2.Comment: 22 pages, 3 figures, draft, please send comment

    Navier-Stokes-alpha model: LES equations with nonlinear dispersion

    Full text link
    We present a framework for discussing LES equations with nonlinear dispersion. In this framework, we discuss the properties of the nonlinearly dispersive Navier-Stokes-alpha model of incompressible fluid turbulence --- also called the viscous Camassa-Holm equations and the LANS equations in the literature --- in comparison with the corresponding properties of large eddy simulation (LES) equations obtained via the approximate-inverse approach. In this comparison, we identify the spatially filtered NS-alpha equations with a class of generalized LES similarity models. Applying a certain approximate inverse to this class of LES models restores the Kelvin circulation theorem for the defiltered velocity and shows that the NS-alpha model describes the dynamics of the defiltered velocity for this class of generalized LES similarity models. We also show that the subgrid scale forces in the NS-alpha model transform covariantly under Galilean transformations and under a change to a uniformly rotating reference frame. Finally, we discuss in the spectral formulation how the NS-alpha model retains the local interactions among the large scales, retains the nonlocal sweeping effects of large scales on small scales, yet attenuates the local interactions of the small scales amongst themselves.Comment: 15 pages, no figures, Special LES volume of ERCOFTAC bulletin, to appear in 200

    How to mesh up Ewald sums (I): A theoretical and numerical comparison of various particle mesh routines

    Full text link
    Standard Ewald sums, which calculate e.g. the electrostatic energy or the force in periodically closed systems of charged particles, can be efficiently speeded up by the use of the Fast Fourier Transformation (FFT). In this article we investigate three algorithms for the FFT-accelerated Ewald sum, which attracted a widespread attention, namely, the so-called particle-particle-particle-mesh (P3M), particle mesh Ewald (PME) and smooth PME method. We present a unified view of the underlying techniques and the various ingredients which comprise those routines. Additionally, we offer detailed accuracy measurements, which shed some light on the influence of several tuning parameters and also show that the existing methods -- although similar in spirit -- exhibit remarkable differences in accuracy. We propose combinations of the individual components, mostly relying on the P3M approach, which we regard as most flexible.Comment: 18 pages, 8 figures included, revtex styl

    Continuous and discrete Clebsch variational principles

    Full text link
    The Clebsch method provides a unifying approach for deriving variational principles for continuous and discrete dynamical systems where elements of a vector space are used to control dynamics on the cotangent bundle of a Lie group \emph{via} a velocity map. This paper proves a reduction theorem which states that the canonical variables on the Lie group can be eliminated, if and only if the velocity map is a Lie algebra action, thereby producing the Euler-Poincar\'e (EP) equation for the vector space variables. In this case, the map from the canonical variables on the Lie group to the vector space is the standard momentum map defined using the diamond operator. We apply the Clebsch method in examples of the rotating rigid body and the incompressible Euler equations. Along the way, we explain how singular solutions of the EP equation for the diffeomorphism group (EPDiff) arise as momentum maps in the Clebsch approach. In the case of finite dimensional Lie groups, the Clebsch variational principle is discretised to produce a variational integrator for the dynamical system. We obtain a discrete map from which the variables on the cotangent bundle of a Lie group may be eliminated to produce a discrete EP equation for elements of the vector space. We give an integrator for the rotating rigid body as an example. We also briefly discuss how to discretise infinite-dimensional Clebsch systems, so as to produce conservative numerical methods for fluid dynamics

    How Close to Two Dimensions Does a Lennard-Jones System Need to Be to Produce a Hexatic Phase?

    Get PDF
    We report on a computer simulation study of a Lennard-Jones liquid confined in a narrow slit pore with tunable attractive walls. In order to investigate how freezing in this system occurs, we perform an analysis using different order parameters. Although some of the parameters indicate that the system goes through a hexatic phase, other parameters do not. This shows that to be certain whether a system has a hexatic phase, one needs to study not only a large system, but also several order parameters to check all necessary properties. We find that the Binder cumulant is the most reliable one to prove the existence of a hexatic phase. We observe an intermediate hexatic phase only in a monolayer of particles confined such that the fluctuations in the positions perpendicular to the walls are less then 0.15 particle diameters, i. e. if the system is practically perfectly 2d
    corecore