229 research outputs found
Rough Surface Effect on Meissner Diamagnetism in Normal-layer of N-S Proximity-Contact System
Rough surface effect on the Meissner diamagnetic current in the normal layer
of proximity contact N-S bi-layer is investigated in the clean limit. The
diamagnetic current and the screening length are calculated by use of
quasi-classical Green's function. We show that the surface roughness has a
sizable effect, even when a normal layer width is large compared with the
coherence length . The effect is as large as that
of the impurity scattering and also as that of the finite reflection at the N-S
interface.Comment: 12 pages, 3 figures. To be published in J. Phys. Soc. Jpn. Vol.71-
Spin susceptibility of the superfluid He-B in aerogel
The temperature dependence of paramagnetic susceptibility of the superfluid
^{3}He-B in aerogel is found. Calculations have been performed for an arbitrary
phase shift of s-wave scattering in the framework of BCS weak coupling theory
and the simplest model of aerogel as an aggregate of homogeneously distributed
ordinary impurities. Both limiting cases of the Born and unitary scattering can
be easily obtained from the general result. The existence of gapless
superfluidity starting at the critical impurity concentration depending on the
value of the scattering phase has been demonstrated. While larger than in the
bulk liquid the calculated susceptibility of the B-phase in aerogel proves to
be conspicuously smaller than that determined experimentally in the high
pressure region.Comment: 10 pages, 4 figures, REVTe
Spontaneous magnetization and Hall effect in superconductors with broken time-reversal symmetry
Broken time reversal symmetry (BTRS) in d wave superconductors is studied and
is shown to yield current carrying surface states. The corresponding
spontaneous magnetization is temperature independent near the critical
temperature Tc for weak BTRS, in accord with recent data. For strong BTRS and
thin films we expect a temperature dependent spontaneous magnetization with a
paramagnetic anomaly near Tc. The Hall conductance is found to vanish at zero
wavevector q and finite frequency w, however at finite q,w it has an unusual
structure.Comment: 7 pages, 1 eps figure, Europhysics Letters (in press
Phase-Sensitive Impurity Effects in Vortex Core of Moderately Clean Chiral Superconductors
We study impurity effects in vortex core of two-dimensional moderately clean
su perconductors within the quasiclassical theory. The impurity scattering rate
\G amma(E) of the Andreev bound states in vortex core with +1 vorticity of
p-wav e superconductors with {\mib d}=\hat{\mib z}(p_x+\iu p_y) is suppre
ssed, compared to the normal state scattering rate in the
energ y region \Gamma_{\rm n}^3/E_\delta^2\ll E\ll E_\delta\equiv
|\delta_0|\Delta_\i nfty with scattering phase shift
and the pair-po tential in bulk . Further we
find that for p-wave superconductors with {\mib
d}=\hat{\mib z}(p_x-\iu p_y) is at most {\cal O}(E/\Delta_\i nfty). These
results are in marked contrast to the even-parity case (s,d-wave), where
is known to be proportional to \ln(\Delta_\i
nfty/E) . Parity- and chirality-dependences of impurity effects are attributed
to the Andr eev reflections involved in the impurity-induced scattering between
bound states . Implications for the flux flow conductivity is also discussed.
Novel enhanceme nt of flux flow conductivity is expected to occur at for {\mib d}=\hat{\mib z}(p_x+\iu p_y) and at
for {\mib d}=\hat{\mib z}(p_x-\iu p_y).Comment: 9 pages, No figures, To appear in JPSJ Vol. 69, No. 10 (2000
Edge Current due to Majorana Fermions in Superfluid He A- and B-Phases
We propose a method utilizing edge current to observe Majorana fermions in
the surface Andreev bound state for the superfluid He A- and B-phases. The
proposal is based on self-consistent analytic solutions of quasi-classical
Green's function with an edge. The local density of states and edge mass
current in the A-phase or edge spin current in the B-phase can be obtained from
these solutions. The edge current carried by the Majorana fermions is partially
cancelled by quasiparticles (QPs) in the continuum state outside the superfluid
gap. QPs contributing to the edge current in the continuum state are
distributed in energy even away from the superfluid gap. The effect of Majorana
fermions emerges in the depletion of the edge current by temperature within a
low-temperature range. The observations that the reduction in the mass current
is changed by -power in the A-phase and the reduction in the spin current
is changed by -power in the B-phase establish the existence of Majorana
fermions. We also point out another possibility for observing Majorana fermions
by controlling surface roughness.Comment: 13 pages, 4 figures, published versio
Overscreening Diamagnetism in Cylindrical Superconductor-Normal Metal-Heterostructures
We study the linear diamagnetic response of a superconducting cylinder coated
by a normal-metal layer due to the proximity effect using the clean limit
quasiclassical Eilenberger equations. We compare the results for the
susceptibility with those for a planar geometry. Interestingly, for
the cylinder exhibits a stronger overscreening of the magnetic field, i.e., at
the interface to the superconductor it can be less than (-1/2) of the applied
field. Even for , the diamagnetism can be increased as compared to the
planar case, viz. the magnetic susceptibility becomes smaller than
-3/4. This behaviour can be explained by an intriguing spatial oscillation of
the magnetic field in the normal layer
Numerical Study of Impurity Effects on Quasiparticles within S-wave and Chiral P-wave Vortices
The impurity problems within vortex cores of two-dimensional s-wave and
chiral p-wave superconductors are studied numerically in the framework of the
quasiclassical theory of superconductivity and self-consistent Born
approximation under a trial form of the pair potential. The dispersion and
impurity scattering rate (the inverse of the relaxation time) of the Andreev
bound state localized in vortex cores are deduced from the angular-resoloved
local density of states. The energy dependence of the impurity scattering rates
depends on the pairing symmetry; particularly, in the chiral p-wave vortex core
where chirality and vorticity have opposite sign and hence the total angular
momentum is zero, the impurities are ineffective and the scattering rate is
vanishingly small. Owing to the cancellation of angular momentum between
chirality and vorticity, the chiral p-wave vortex core is similar to locally
realized s-wave region and therefore non-magnetic impurity is harmless as a
consequence of Anderson's theorem. The results of the present study confirm the
previous results of analytical study (J. Phys. Soc. Jpn. {\bf 69} (2000) 3378)
in the Born limit.Comment: 8pages, 9figures, submitted to J. Phys. Soc. Jp
- …
