279 research outputs found

    Eukaryotic Microbes, Principally Fungi and Labyrinthulomycetes, Dominate Biomass on Bathypelagic Marine Snow

    Get PDF
    In the bathypelagic realm of the ocean, the role of marine snow as a carbon and energy source for the deep-sea biota and as a potential hotspot of microbial diversity and activity has not received adequate attention. Here, we collected bathypelagic marine snow by gentle gravity filtration of sea water onto ÎŒm filters from similar to 1000 to 3900 m to investigate the relative distribution of eukaryotic microbes. Compared with sediment traps that select for fast-sinking particles, this method collects particles unbiased by settling velocity. While prokaryotes numerically exceeded eukaryotes on marine snow, eukaryotic microbes belonging to two very distant branches of the eukaryote tree, the fungi and the labyrinthulomycetes, dominated overall biomass. Being tolerant to cold temperature and high hydrostatic pressure, these saprotrophic organisms have the potential to significantly contribute to the degradation of organic matter in the deep sea. Our results demonstrate that the community composition on bathypelagic marine snow differs greatly from that in the ambient water leading to wide ecological niche separation between the two environments

    Fracture zones in the Mid Atlantic Ridge lead to alterations in prokaryotic and viral parameters in deep-water masses

    Get PDF
    We hypothesized that mixing zones of deep-water masses act as ecotones leading to alterations in microbial diversity and activity due to changes in the biogeochemical characteristics of these boundary systems. We determined the changes in prokaryotic and viral abundance and production in the Vema Fracture Zone (VFZ) of the subtropical North Atlantic Ocean, where North Atlantic Deep Water (NADW) and Antarctic Bottom Water (AABW) are funneled through this narrow canyon and therefore, are subjected to intense vertical mixing. Consequently, salinity, potential temperature, oxygen, PO4, SiO4, NO3 were altered in the NADW inside the VFZ as compared to the NADW outside of the VFZ. Also, viral abundance, lytic viral production (VP) and the virus-to-prokaryote ratio (VPR) were elevated in the NADW in the VFZ as compared to the NADW outside the VFZ. In contrast to lytic VP, lysogenic VP and both the frequency of lytically (FIC) and lysogenically infected cells (FLC) did not significantly differ between in- and outside the VFZ. Generally, FIC was higher than FLC throughout the water column. Prokaryotic (determined by T-RFLP) and viral (determined by RAPD-PCR) community composition was depth-stratified inside and outside the VFZ. The viral community was more modified both with depth and over distance inside the VFZ as compared to the northern section and to the prokaryotic communities. However, no clusters of prokaryotic and viral communities characteristic for the VFZ were identified. Based on our observations, we conclude that turbulent mixing of the deep water masses impacts not only the physico-chemical parameters of the mixing zone but also the interaction between viruses and prokaryotes due to a stimulation of the overall activity. However, only minor effects of deep water mixing were observed on the community composition of the dominant prokaryotes and viruses

    Thermonuclear Reaction Rate of 23Mg(p,gamma)24$Al

    Full text link
    Updated stellar rates for the reaction 23Mg(p,gamma)24Al are calculated by using all available experimental information on 24Al excitation energies. Proton and gamma-ray partial widths for astrophysically important resonances are derived from shell model calculations. Correspondences of experimentally observed 24Al levels with shell model states are based on application of the isobaric multiplet mass equation. Our new rates suggest that the 23Mg(p,gamma)24Al reaction influences the nucleosynthesis in the mass A>20 region during thermonuclear runaways on massive white dwarfs.Comment: 13 pages (uses Revtex) including 3 postscript figures (uses epsfig.sty), accepted for publication in Phys. Rev.

    Corrigendum: Resolving the abundance and air-sea fluxes of airborne microorganisms in the North Atlantic Ocean

    Get PDF
    We found an implementation error in the calculation of the deposition velocity (vd) which, in turn, affected all the estimated vd-depending parameters (deposition flux, residence time, and traveled distance by microorganisms). Deposition fluxes are now somewhat lower than previously estimated, resulting in residence times and traveled distances longer than those previously estimated. In addition, the spray fluxes were calculated using a spray generation function (dF/dr0) valid for droplets of radii between 0.5 and 12 ÎŒm proposed by Blanchard (1963) and Gathman (1982) as corrected by Andreas et al. (1995). However, in the calculation of dF/dr0, we exceeded this valid range of radii given that we included droplets with radii from 0.2 ÎŒm according to the small size of some microbial cells. Thus, a different formulation of dF/dr0, developed by Gong (2003), is now used for the estimation of spray fluxes of microbes, which is valid even for small droplets from a radius of 0.07 ÎŒm. Below, we offer a new corrected version of the paragraphs affected by corrections along the text. In addition, we show corrected versions of Figure 1 (forward trajectories according residence times), Figure 3 (deposition velocity values), Figure 5 (spray and deposition fluxes), Figure 6 (Net fluxes), and Table 1. The authors apologize for the errors in the estimates reported in the original manuscript. These corrections only affect the magnitude of some of the reported variables and even though they do not change the scientific conclusions of the article they are reported here for accuracy and reproducibility.En prens

    Nuclear uncertainties in the NeNa-MgAl cycles and production of 22Na and 26Al during nova outbursts

    Get PDF
    Classical novae eject significant amounts of nuclear processed material into the interstellar medium. Among the isotopes synthesized during such explosions, two radioactive nuclei deserve a particular attention: 22Na and 26Al. In this paper, we investigate the nuclear paths leading to 22Na and 26Al production during nova outbursts by means of an implicit, hydrodynamic code that follows the course of the thermonuclear runaway from the onset of accretion up to the ejection stage. New evolutionary sequences of ONe novae have been computed, using updated nuclear reaction rates relevant to 22Na and 26Al production. Special attention is focused on the role played by nuclear uncertainties within the NeNa and MgAl cycles in the synthesis of such radioactive species. From the series of hydrodynamic models, which assume upper, recommended or lower estimates of the reaction rates, we derive limits on the production of both 22Na and 26Al. We outline a list of nuclear reactions which deserve new experimental investigations in order to reduce the wide dispersion introduced by nuclear uncertainties in the 22Na and 26Al yields.Comment: 46 pages, 4 figures. Accepted for publication in The Astrophysical Journa

    Seasonal dynamics of marine snow‐associated and free‐living demethylating bacterial communities in the coastal northern Adriatic Sea

    Get PDF
    The extent of DMSP demethylation has been hypothesized to depend on DMSP availability and bacterial sulfur demand, which might lead to niche differentiation of the demethylating bacterial community. In this study, we determined DMSP concentrations in marine snow and the ambient water over a seasonal cycle and linked DMSP concentrations to the abundance of bacteria harboring the demethylation dmdA gene in the Adriatic Sea. In marine snow, DMSP concentrations were up to four times higher than in the ambient water and three times higher in marine snow in summer than in winter. The average dmdA:recA gene ratio over the sampling period was 0.40 ± 0.24 in marine snow and 0.48 ± 0.21 in the ambient water. However, at the subclade level, differences in the demethylating bacterial community of marine snow and the ambient water were apparent. Seasonal patterns of potentially demethylating bacteria were best visible at the oligotype level. In the ambient water, the SAR116 and the OM60/NOR5 clade were composed of oligotypes that correlated to high DMSP concentrations, while oligotypes of the Rhodospirillales correlated to low DMSP concentrations. Our results revealed a pronounced seasonal variability and spatial heterogeneity in DMSP concentrations and the associated demethylating bacterial community

    Reaction rates for Neutron Capture Reactions to C-, N- and O-isotopes to the neutron rich side of stability

    Get PDF
    The reaction rates of neutron capture reactions on light nuclei are important for reliably simulating nucleosynthesis in a variety of stellar scenarios. Neutron capture reaction rates on neutron-rich C-, N-, and O-isotopes are calculated in the framework of a hybrid compound and direct capture model. The results are tabulated and compared with the results of previous calculations as well as with experimental results.Comment: 33 pages (uses revtex) and 9 postscript figures, accepted for publication in Phys. Rev.

    Reviews and syntheses: Heterotrophic fixation of inorganic carbon – significant but invisible flux in environmental carbon cycling

    Get PDF
    Heterotrophic CO2 fixation is a significant yet underappreciated CO2 flux in environmental carbon cycling. In contrast to photosynthesis and chemolithoautotrophy – the main recognized autotrophic CO2 fixation pathways – the importance of heterotrophic CO2 fixation remains enigmatic. All heterotrophs – from microorganisms to humans – take up CO2 and incorporate it into their biomass. Depending on the availability and quality of growth substrates, and drivers such as the CO2 partial pressure, heterotrophic CO2 fixation contributes at least 1 %–5 % and in the case of methanotrophs up to 50 % of the carbon biomass. Assuming a standing stock of global heterotrophic biomass of 47–85 Pg C, we roughly estimate that up to 5 Pg C might be derived from heterotrophic CO2 fixation, and up to 12 Pg C yr−1 originating from heterotrophic CO2 fixation is funneled into the global annual heterotrophic production of 34–245 Pg C yr−1. These first estimates on the importance of heterotrophic fixation of inorganic carbon indicate that this pathway should be incorporated in present and future carbon cycling budgets.</p

    Measurement of neutron capture on 48^{48}Ca at thermal and thermonuclear energies

    Full text link
    At the Karlsruhe pulsed 3.75\,MV Van de Graaff accelerator the thermonuclear 48^{48}Ca(n,Îł\gamma)49^{49}Ca(8.72\,min) cross section was measured by the fast cyclic activation technique via the 3084.5\,keV Îł\gamma-ray line of the 49^{49}Ca-decay. Samples of CaCO3_3 enriched in 48^{48}Ca by 77.87\,\% were irradiated between two gold foils which served as capture standards. The capture cross-section was measured at the neutron energies 25, 151, 176, and 218\,keV, respectively. Additionally, the thermal capture cross-section was measured at the reactor BR1 in Mol, Belgium, via the prompt and decay Îł\gamma-ray lines using the same target material. The 48^{48}Ca(n,Îł\gamma)49^{49}Ca cross-section in the thermonuclear and thermal energy range has been calculated using the direct-capture model combined with folding potentials. The potential strengths are adjusted to the scattering length and the binding energies of the final states in 49^{49}Ca. The small coherent elastic cross section of 48^{48}Ca+n is explained through the nuclear Ramsauer effect. Spectroscopic factors of 49^{49}Ca have been extracted from the thermal capture cross-section with better accuracy than from a recent (d,p) experiment. Within the uncertainties both results are in agreement. The non-resonant thermal and thermonuclear experimental data for this reaction can be reproduced using the direct-capture model. A possible interference with a resonant contribution is discussed. The neutron spectroscopic factors of 49^{49}Ca determined from shell-model calculations are compared with the values extracted from the experimental cross sections for 48^{48}Ca(d,p)49^{49}Ca and 48^{48}Ca(n,Îł\gamma)49^{49}Ca.Comment: 15 pages (uses Revtex), 7 postscript figures (uses psfig), accepted for publication in PRC, uuencoded tex-files and postscript-files also available at ftp://is1.kph.tuwien.ac.at/pub/ohu/Ca.u
    • 

    corecore