32 research outputs found

    The CHEK2*1100delC mutation has no major contribution in oesophageal carcinogenesis

    Get PDF
    In response to DNA damage, the cell cycle checkpoint kinase 2 (CHEK2) may phosphorylate p53, Cdc25A and Cdc25C, and regulate BRCA1 function, leading to cell cycle arrest and DNA repair. The truncating germline mutation CHEK2*1100delC abrogates kinase activity and confers low-penetrance susceptibility to breast cancer. We found CHEK2*1100delC in 0.5% of 190 oesophageal squamous cell carcinomas and in 1.5% of 196 oesophageal adenocarcinomas. In addition, we observed the mutation in 3.0% of 99 Barrett's metaplasias and 1.5% of 66 dysplastic Barrett's epithelia, both known precursor lesions of oesophageal adenocarcinoma. Since CHEK2*1100delC mutation frequencies did not significantly differ among oesophageal squamous cell carcinomas, adenocarcinomas and (dysplastic) Barrett's epithelia, as compared to healthy individuals, we conclude that the CHEK2*1100delC mutation has no major contribution in oesophageal carcinogenesis

    Ochronosis as an unusual cause of a valvular defect: a case report

    Get PDF
    INTRODUCTION: Alkaptonuria (also known as ochronosis) is a genetic disorder characterised by the accumulation of homogentisic acid deposits in connective tissue. In rare cases, ochronosis can cause valvular heart disease. CASE PRESENTATION: We present the case of a 68-year-old Caucasian man with alkaptonuria-associated degenerative valvular defects with aortic, mitral and tricuspid valve insufficiency. The patient did not have any cardiac complaints and was referred to our clinic for evaluation of a conspicuous new heart murmur. CONCLUSION: This case report shows that early diagnosis of cardiovascular ochronosis gives us the opportunity to use conservative treatment to slow down the progression of valvular dysfunction
    corecore