41 research outputs found

    The effect of partial substitution of rapeseed meal and faba beans by Spirulina platensis microalgae on milk production, nitrogen utilization, and amino acid metabolism of lactating dairy cows

    Get PDF
    Alternative protein sources such as microalgae and faba beans may have environmental benefits over rapeseed. We studied the effects of rapeseed meal (RSM) or faba beans (FB) as a sole protein feed or as protein feeds partially substituted with Spirulina platensis (spirulina) microalgae on milk production, N utilization, and AA metabolism of dairy cows. Eight multiparous Finnish Ayrshire cows (113 +/- 36.3 d in milk; mean +/- SD) were used in a balanced, replicated 4 x 4 Latin square with 2 x 2 factorial arrangement of treatments and 21-d periods. Four cows in one Latin square were rumen cannulated. Treatments were 2 isonitrogenously fed protein sources, RSM or rolled FB, or one of these sources with half of its crude protein substituted by spirulina (RSM-SPI and FB-SPI). Cows had ad libitum access to total mixed rations consisting of grass silage, barley, sugar beet pulp, minerals, and experimental protein feed. The substitution of RSM with FB did not affect dry matter intake (DMI) but decreased neutral detergent fiber intake and increased the digestibility of other nutrients. Spirulina in the diet decreased DMI and His intake. Spirulina had no effect on Met intake in cows on RSM diets but increased it in those on FB diets. Energy-corrected milk (ECM) and protein yields were decreased when RSM was substituted by FB. Milk and lactose yields were decreased in cows on the RSM-SPI diet compared with the RSM diet but increased in those on FB-SPI compared with FB. The opposite was true for milk fat and protein concentrations; thus, spirulina in the diet did not affect ECM. Feed conversion efficiency (ECM: DMI) increased in cows on FB diets with spirulina, whereas little effect was observed for those on RSM diets. The substitution of RSM by FB decreased arterial concentration of Met and essential AA. Spirulina in the diet increased milk urea N and ruminal NH4-N and decreased the efficiency of N utilization in cows on RSM diets, whereas those on FB diets showed opposite results. Met likely limited milk production in cows on the FB diet as evidenced by the decrease in arterial Met concentration and milk protein yield when RSM was substituted by FB. The results suggest the potential to improve milk production response to faba beans with supplementation of Met-rich feeds such as spirulina. This study also confirmed spirulina had poorer palatability than RSM and FB despite total mixed ration feeding and lower milk production when spirulina partially replaced RSM.Peer reviewe

    Review : Alternative and novel feeds for ruminants: nutritive value, product quality and environmental aspects

    Get PDF
    Ruminant-based food production faces currently multiple challenges such as environmental emissions, climate change and accelerating food-feed-fuel competition for arable land. Therefore, more sustainable feed production is needed together with the exploitation of novel resources. In addition to numerous food industry (milling, sugar, starch, alcohol or plant oil) side streams already in use, new ones such as vegetable and fruit residues are explored, but their conservation is challenging and production often seasonal. In the temperate zones, lipid-rich camelina (Camelina sativa) expeller as an example of oilseed by-products has potential to enrich ruminant milk and meat fat with bioactive trans-11 18:1 and cis-9,trans-11 18:2 fatty acids and mitigate methane emissions. Regardless of the lower methionine content of alternative grain legume protein relative to soya bean meal (Glycine max), the lactation performance or the growth of ruminants fed faba beans (Vicia faba), peas (Pisum sativum) and lupins (Lupinus sp.) are comparable. Wood is the most abundant carbohydrate worldwide, but agroforestry approaches in ruminant nutrition are not common in the temperate areas. Untreated wood is poorly utilised by ruminants because of linkages between cellulose and lignin, but the utilisability can be improved by various processing methods. In the tropics, the leaves of fodder trees and shrubs (e.g. cassava (Manihot esculenta), Leucaena sp., Flemingia sp.) are good protein supplements for ruminants. A food-feed production system integrates the leaves and the by-products of on-farm food production to grass production in ruminant feeding. It can improve animal performance sustainably at smallholder farms. For larger-scale animal production, detoxified jatropha (Jatropha sp.) meal is a noteworthy alternative protein source. Globally, the advantages of single-cell protein (bacteria, yeast, fungi, microalgae) and aquatic biomass (seaweed, duckweed) over land crops are the independence of production from arable land and weather. The chemical composition of these feeds varies widely depending on the species and growth conditions. Microalgae have shown good potential both as lipid (e.g. Schizochytrium sp.) and protein supplements (e.g. Spirulina platensis) for ruminants. To conclude, various novel or underexploited feeds have potential to replace or supplement the traditional crops in ruminant rations. In the short-term, N-fixing grain legumes, oilseeds such as camelina and increased use of food and/or fuel industry by-products have the greatest potential to replace or supplement the traditional crops especially in the temperate zones. In the long-term, microalgae and duckweed of high-yield potential as well as wood industry by-products may become economically competitive feed options worldwide.Peer reviewe

    Effect of incremental amounts of camelina oil on milk fatty acid composition in lactating cows fed diets based on a mixture of grass and red clover silage and concentrates containing camelina expeller

    Get PDF
    Camelina is an ancient oilseed crop that produces an oil rich in cis-9,cis-12 18:2 (linoleic acid, LA) and cis9,cis-12, cis-15 18:3 (alpha-linolenic acid, ALA); however, reports on the use of camelina oil (CO) for ruminants are limited. The present study investigated the effects of incremental CO supplementation on animal performance, milk fatty acid (FA) composition, and milk sensory quality. Eight Finnish Ayrshire cows (91 d in milk) were used in replicated 4 x 4 Latin squares with 21-d periods. Treatments comprised 4 concentrates (12 kg/d on an air-dry basis) based on cereals and camelina expeller containing 0 (control), 2, 4, or 6% CO on an air-dry basis. Cows were offered a mixture of grass and red clover silage (RCS; 1:1 on a dry matter basis) ad libitum. Incremental CO supplementation linearly decreased silage and total dry matter intake, and linearly increased LA, ALA, and total FA intake. Treatments had no effect on whole-tract apparent organic matter or fiber digestibility and did not have a major influence on rumen fermentation. Supplements of CO quadratically decreased daily milk and lactose yields and linearly decreased milk protein yield and milk taste panel score from 4.2 to 3.6 [on a scale of 1 (poor) to 5 (excellent)], without altering milk fat yield. Inclusion of CO linearly decreased the proportions of saturated FA synthesized de novo (4:0 to 16:0), without altering milk fat 18:0, cis-9 18:1, LA, and ALA concentrations. Milk fat 18:0 was low (Peer reviewe

    Performance and nutrient utilisation of dairy cows offered silages produced from three successive harvests of either a red clover–perennial ryegrass sward or a perennial ryegrass sward

    Get PDF
    The need to reduce reliance on imported protein feeds within the UK and Ireland has stimulated interest in locally grown forage legume crops, including red clover (Trifolium pratense L.). This 13-wk study examined the performance of 28 dairy cows offered silages produced from three successive harvests (H) of either a pure grass sward (GS) receiving 315 kg N/ha per annum or a red clover–perennial ryegrass sward (RCGS) receiving 22 kg N/ha per annum. The crops of H1, H2 and H3 were wilted for 48, 72 and 72 h, respectively. Silages from H1, H2 and H3 were offered for 5, 5 and 3 wk, respectively, with cows supplemented with 8.0 kg concentrate/d throughout the experiment. Digestibility of DM and the effectively degradable protein content were lower, while protein degradability was higher, for RCGS than for GS. Silage DM intakes (DMIs) were higher for RCGS than for GS at H1 and H2, with no differences at H3. Milk yield was higher with RCGS than with GS at H3, with no differences at H1 and H2. Milk fat and milk protein contents were lower with RCGS than with GS at H3 but did not differ at H1 and H2. Faecal N/N intake was higher in the RCGS group than in the GS group at H1, with no differences at H2 and H3. Gross energy digestibility was lower for RCGS than for GS at H2. Although cow performance was higher with RCGS treatment, the responses were variable between harvests, largely reflecting the changing proportion of RC in the swards as the season progresse

    Prediction of nitrogen excretion from data on dairy cows fed a wide range of diets compiled in an intercontinental database: A meta-analysis

    Get PDF
    Manure nitrogen (N) from cattle contributes to nitrous oxide and ammonia emissions and nitrate leaching. Measurement of manure N outputs on dairy farms is laborious, expensive, and impractical at large scales; therefore, models are needed to predict N excreted in urine and feces. Building robust prediction models requires extensive data from animals under different management systems worldwide. Thus, the study objectives were (1) to collate an international database of N excretion in feces and urine based on individual lactating dairy cow data from different continents; (2) to determine the suitability of key variables for predicting fecal, urinary, and total manure N excretion; and (3) to develop robust and reliable N excretion prediction models based on individual data from lactating dairy cows consuming various diets. A raw data set was created based on 5,483 individual cow observations, with 5,420 fecal N excretion and 3,621 urine N excretion measurements collected from 162 in vivo experiments conducted by 22 research institutes mostly located in Europe (n = 14) and North America (n = 5). A sequential approach was taken in developing models with increasing complexity by incrementally adding variables that had a significant individual effect on fecal, urinary, or total 2manure N excretion. Nitrogen excretion was predicted by fitting linear mixed models including experiment as a random effect. Simple models requiring dry matter intake (DMI) or N intake performed better for predicting fecal N excretion than simple models using diet nutrient composition or milk performance parameters. Simple models based on N intake performed better for urinary and total manure N excretion than those based on DMI, but simple models using milk urea N (MUN) and N intake performed even better for urinary N excretion. The full model predicting fecal N excretion had similar performance to simple models based on DMI but included several independent variables (DMI, diet crude protein content, diet neutral detergent fiber content, milk protein), depending on the location, and had root mean square prediction errors as a fraction of the observed mean values of 19.1% for intercontinental, 19.8% for European, and 17.7% for North American data sets. Complex total manure N excretion models based on N intake and MUN led to prediction errors of about 13.0% to 14.0%, which were comparable to models based on N intake alone. Intercepts and slopes of variables in optimal prediction equations developed on intercontinental, European, and North American bases differed from each other, and therefore region-specific models are preferred to predict N excretion. In conclusion, region-specific models that include information on DMI or N intake and MUN are required for good prediction of fecal, urinary, and total manure N excretion. In absence of intake data, region-specific complex equations using easily and routinely measured variables to predict fecal, urinary, or total manure N excretion may be used, but these equations have lower performance than equations based on intake
    corecore