9 research outputs found

    Projection-Specific Visual Feature Encoding by Layer 5 Cortical Subnetworks

    Get PDF
    Primary neocortical sensory areas act as central hubs, distributing afferent information to numerous cortical and subcortical structures. However, it remains unclear whether each downstream target receives a distinct version of sensory information. We used in vivo calcium imaging combined with retrograde tracing to monitor visual response properties of three distinct subpopulations of projection neurons in primary visual cortex. Although there is overlap across the groups, on average, corticotectal (CT) cells exhibit lower contrast thresholds and broader tuning for orientation and spatial frequency in comparison to corticostriatal (CS) cells, whereas corticocortical (CC) cells have intermediate properties. Noise correlational analyses support the hypothesis that CT cells integrate information across diverse layer 5 populations, whereas CS and CC cells form more selectively interconnected groups. Overall, our findings demonstrate the existence of functional subnetworks within layer 5 that may differentially route visual information to behaviorally relevant downstream targets

    The Importance of Accounting for Movement When Relating Neuronal Activity to Sensory and Cognitive Processes.

    No full text
    A surprising finding of recent studies in mouse is the dominance of widespread movement-related activity throughout the brain, including in early sensory areas. In awake subjects, failing to account for movement risks misattributing movement-related activity to other (e.g., sensory or cognitive) processes. In this article, we (1) review task designs for separating task-related and movement-related activity, (2) review three "case studies" in which not considering movement would have resulted in critically different interpretations of neuronal function, and (3) discuss functional couplings that may prevent us from ever fully isolating sensory, motor, and cognitive-related activity. Our main thesis is that neural signals related to movement are ubiquitous, and therefore ought to be considered first and foremost when attempting to correlate neuronal activity with task-related processes

    Ribosome-free Terminals of Rough ER Allow Formation of STIM1 Puncta and Segregation of STIM1 from IP3 Receptors

    Get PDF
    Store-operated Ca2+ entry is a ubiquitous mechanism that prevents the depletion of endoplasmic reticulum (ER) calcium [1]. A reduction of ER calcium triggers translocation of STIM proteins, which serve as calcium sensors in the ER, to subplasmalemmal puncta where they interact with and activate Orai channels ([2–8]; reviewed in [9]). In pancreatic acinar cells, inositol 1,4,5-trisphosphate (IP3) receptors populate the apical part of the ER. Here, however, we observe that STIM1 translocates exclusively to the lateral and basal regions following ER Ca2+ loss. This finding is paradoxical because the basal and lateral regions of the acinar cells contain rough ER (RER); the size of the ribosomes that decorate RER is larger than the distance that can be spanned by a STIM-Orai complex [5, 10], and STIM1 function should therefore not be possible. We resolve this paradox and characterize ribosome-free terminals of the RER that form junctions between the reticulum and the plasma membrane in the basal and lateral regions of the acinar cells. Our findings indicate that different ER compartments specialize in different calcium-handling functions (Ca2+ release and Ca2+ reloading) and that any potential interference between Ca2+ release and Ca2+ influx is minimized by the spatial separation of the two processes

    Developmental Dysfunction of VIP Interneurons Impairs Cortical Circuits

    No full text
    GABAergic interneurons play important roles in cortical circuit development. However, there are multiple populations of interneurons and their respective developmental contributions remain poorly explored. Neuregulin 1 (NRG1) and its interneuron-specific receptor ERBB4 are critical genes for interneuron maturation. Using a conditional ErbB4 deletion, we tested the role of vasoactive intestinal peptide (VIP)-expressing interneurons in the postnatal maturation of cortical circuits in vivo. ErbB4 removal from VIP interneurons during development leads to changes in their activity, along with severe dysregulation of cortical temporal organization and state dependence. These alterations emerge during adolescence, and mature animals in which VIP interneurons lack ErbB4 exhibit reduced cortical responses to sensory stimuli and impaired sensory learning. Our data support a key role for VIP interneurons in cortical circuit development and suggest a possible contribution to pathophysiology in neurodevelopmental disorders. These findings provide a new perspective on the role of GABAergic interneuron diversity in cortical development. VIDEO ABSTRACT

    Mechanisms and Regulation of Neuronal GABAB Receptor-Dependent Signaling

    No full text
    corecore