83 research outputs found

    Using surface regolith geochemistry to map the major crustal blocks of the Australian continent

    Get PDF
    Multi-element near-surface geochemistry from the National Geochemical Survey of Australia has been evaluated in the context of mapping the exposed to deeply buried major crustal blocks of the Australian continent. The major crustal blocks, interpreted from geophysical and geological data, reflect distinct tectonic domains comprised of early Archean to recent Cenozoic igneous, metamorphic and sedimentary rock assemblages. The geochemical data have been treated as compositional data to uniquely describe and characterize the geochemistry of the regolith overlying the major crustal blocks across Australia according to the following workflow: imputation of missing/censored data, log-ratio transformation, multivariate statistical analysis, multivariate geospatial (minimum/maximum autocorrelation factor) analysis, and classification. Using cross validation techniques, the uniqueness of each major crustal block has been quantified. The ability to predict the membership of a surface regolith sample to one or more of the major crustal blocks is demonstrated. The predicted crustal block assignments define spatially coherent regions that coincide with the known crustal blocks. In some areas, inaccurate predictions are due to uncertainty in the initial crustal boundary definition or from surficial processes that mask the crustal block geochemical signature. In conclusion, the geochemical composition of the Australian surface regolith generally can be used to map the underlying crustal architecture, despite secondary modifications due to physical transport and chemical weathering effects. This methodology is however less effective where extensive and thick sedimentary basins such as the Eromanga and Eucla basins overlie crustal blocks

    Recognition of geochemical footprints of mineral systems in the regolith at regional to continental scales

    Get PDF
    Understanding the character of Australia's extensive regolith cover is crucial to the continuing success of mineral exploration. We hypothesise that the regolith contains geochemical fingerprints of processes related to the development and preservation of mineral systems at a range of scales. We test this hypothesis by analysing the composition of surface sediments within greenfield regional-scale (southern Thomson Orogen) and continental-scale (Australia) study areas. In the southern Thomson Orogen area, the first principal component (PC1) derived in our study [Ca, Sr, Cu, Mg, Au and Mo at one end; rare earth elements (REEs) and Th at the other] is very similar to the empirical vector used by a local company (enrichment in Sr, Ca and Au concomitant with depletion in REEs) to successfully site exploration drill holes for Cu-Au mineralisation. Mapping of the spatial distribution of PC1 in the region reveals several areas of elevated values and possible mineralisation potential. One of the strongest targets in the PC1 map is located between Brewarrina and Bourke in northern New South Wales. Here, exploration drilling has intersected porphyry Cu-Au mineralisation with up to 1 wt% Cu, 0.1 g/t Au, and 717ppm Zn. The analysis of a comparable geochemical dataset at the continental scale yields a compositionally similar PC1 (Ca, Sr, Mg, Cu, Au and Mo at one end; REEs and Th at the other) to that of the regional study. Mapping PC1 at the continental scale shows patterns that (1) are spatially compatible with the regional study and (2) reveal several geological regions of elevated values, possibly suggesting an enhanced potential for porphyry Cu-Au mineralisation. These include well-endowed mineral provinces such as the Curnamona and Capricorn regions, but also some greenfield regions such as the Albany-Fraser/western Eucla, western Murray and Eromanga geological regions. We conclude that the geochemical composition of Australia's regolith may hold critical information pertaining to mineralisation within/beneath it.The studies reported here would not have been possible without Commonwealth funding through the Cooperative Research Centre Program, the Onshore Energy Security Program, and Geoscience Australia appropriation

    On action of the Virasoro algebra on the space of univalent functions

    Get PDF
    We obtain explicit expressions for differential operators defining the action of the Virasoro algebra on the space of univalent functions. We also obtain an explicit Taylor decomposition for Schwarzian derivative and a formula for the Grunsky coefficients.Comment: 15

    Using surface regolith geochemistry to map the major crustal blocks of the Australian continent

    No full text
    Multi-element near-surface geochemistry from the National Geochemical Survey of Australia has been evaluated in the context of mapping the exposed to deeply buried major crustal blocks of the Australian continent. The major crustal blocks, interpreted from geophysical and geological data, reflect distinct tectonic domains comprised of early Archean to recent Cenozoic igneous, metamorphic and sedimentary rock assemblages. The geochemical data have been treated as compositional data to uniquely describe and characterize the geochemistry of the regolith overlying the major crustal blocks across Australia according to the following workflow: imputation of missing/censored data, log-ratio transformation, multivariate statistical analysis, multivariate geospatial (minimum/maximum autocorrelation factor) analysis, and classification. Using cross validation techniques, the uniqueness of each major crustal block has been quantified. The ability to predict the membership of a surface regolith sample to one or more of the major crustal blocks is demonstrated. The predicted crustal block assignments define spatially coherent regions that coincide with the known crustal blocks. In some areas, inaccurate predictions are due to uncertainty in the initial crustal boundary definition or from surficial processes that mask the crustal block geochemical signature. In conclusion, the geochemical composition of the Australian surface regolith generally can be used to map the underlying crustal architecture, despite secondary modifications due to physical transport and chemical weathering effects. This methodology is however less effective where extensive and thick sedimentary basins such as the Eromanga and Eucla basins overlie crustal blocks. Multi-element near-surface geochemistry from the National Geochemical Survey of Australia has been evaluated in the context of mapping the exposed to deeply buried major crustal blocks of the Australian continent. The major crustal blocks, interpreted from geophysical and geological data, reflect distinct tectonic domains comprised of early Archean to recent Cenozoic igneous, metamorphic and sedimentary rock assemblages. The geochemical data have been treated as compositional data to uniquely describe and characterize the geochemistry of the regolith overlying the major crustal blocks across Australia according to the following workflow: imputation of missing/censored data, log-ratio transformation, multivariate statistical analysis, multivariate geospatial (minimum/maximum autocorrelation factor) analysis, and classification. Using cross validation techniques, the uniqueness of each major crustal block has been quantified. The ability to predict the membership of a surface regolith sample to one or more of the major crustal blocks is demonstrated. The predicted crustal block assignments define spatially coherent regions that coincide with the known crustal blocks. In some areas, inaccurate predictions are due to uncertainty in the initial crustal boundary definition or from surficial processes that mask the crustal block geochemical signature. In conclusion, the geochemical composition of the Australian surface regolith generally can be used to map the underlying crustal architecture, despite secondary modifications due to physical transport and chemical weathering effects. This methodology is however less effective where extensive and thick sedimentary basins such as the Eromanga and Eucla basins overlie crustal blocks
    • …
    corecore