245 research outputs found
Optimization of the coherence function estimation for multi-core central processing unit
The paper considers use of parallel processing on multi-core central processing unit for optimization of the coherence function evaluation arising in digital signal processing. Coherence function along with other methods of spectral analysis is commonly used for vibration diagnosis of rotating machinery and its particular nodes. An algorithm is given for the function evaluation for signals represented with digital samples. The algorithm is analyzed for its software implementation and computational problems. Optimization measures are described, including algorithmic, architecture and compiler optimization, their results are assessed for multi-core processors from different manufacturers. Thus, speeding-up of the parallel execution with respect to sequential execution was studied and results are presented for Intel Core i7-4720HQ и AMD FX-9590 processors. The results show comparatively high efficiency of the optimization measures taken. In particular, acceleration indicators and average CPU utilization have been significantly improved, showing high degree of parallelism of the constructed calculating functions. The developed software underwent state registration and will be used as a part of a software and hardware solution for rotating machinery fault diagnosis and pipeline leak location with acoustic correlation method
CGM properties in VELA and NIHAO simulations; the OVI ionization mechanism: dependence on redshift, halo mass and radius
We study the components of cool and warm/hot gas in the circumgalactic medium
(CGM) of simulated galaxies and address the relative production of OVI by
photoionization versus collisional ionization, as a function of halo mass,
redshift, and distance from the galaxy halo center. This is done utilizing two
different suites of zoom-in hydro-cosmological simulations, VELA (6 halos;
) and NIHAO (18 halos; to ), which provide a broad theoretical basis
because they use different codes and physical recipes for star formation and
feedback. In all halos studied in this work, we find that collisional
ionization by thermal electrons dominates at high redshift, while
photoionization of cool or warm gas by the metagalactic radiation takes over
near . In halos of and above, collisions become
important again at , while photoionization remains significant down to
for less massive halos. In halos with , at most of the photoionized OVI is in a
warm, not cool, gas phase (~K). We also find that
collisions are dominant in the central regions of halos, while photoionization
is more significant at the outskirts, around , even in massive
halos. This too may be explained by the presence of warm gas or, in lower mass
halos, by cool gas inflows
The leak location package for assessment of the time-frequency correlation method for leak location
The paper describes the simplest implementation of a software and hardware package for acoustic correlation leak location and results of its performance assessment for location of water leaks from a metallic pipe in laboratory conditions. A distinctive feature of this leak locator is the use of the software based on the time-frequency correlation analysis of signals, which was proposed in our previous papers. Comparative analysis results are given for the information content of classical and time-frequency cross-correlation functions as obtained during processing of experimental data. The results obtained justify comparatively higher efficiency of a time-frequency cross correlation method to solve the leak location task. Improved efficiency is determined by bandpass filtration embedded into the time-frequency cross-correlation function calculation
The time-frequency method of signal analysis in internal combustion engine diagnostics
The paper presents the results of the study of applicability of time-frequency correlation functions to solving the problems of internal combustion engine fault diagnostics. The proposed methods are theoretically justified and experimentally tested. In particular, the method's applicability is illustrated by the example of specially generated signals that simulate the vibration of an engine both during the normal operation and in the case of a malfunction in the system supplying fuel to the cylinders. This method was confirmed during an experiment with an automobile internal combustion engine. The study offers the main findings of the simulation and the experiment and highlights certain characteristic features of time-frequency autocorrelation functions that allow one to identify malfunctions in an engine's cylinder. The possibility in principle of using time-frequency correlation functions in function testing of the internal combustion engine is demonstrated. The paper's conclusion proposes further research directions including the application of the method to diagnosing automobile gearboxes
Automation of data processing and calculation of retention parameters and thermodynamic data for gas chromatography
The analyses of automation patterns is performed and the programming solution for the automation of data processing of the chromatographic data and their further information storage with a help of a software package, Mathcad and MS Excel spreadsheets, is developed. The offered approach concedes the ability of data processing algorithm modification and does not require any programming experts participation. The approach provides making a measurement of the given time and retention volumes, specific retention volumes, a measurement of differential molar free adsorption energy, and a measurement of partial molar solution enthalpies and isosteric heats of adsorption. The developed solution is focused on the appliance in a small research group and is tested on the series of some new gas chromatography sorbents. More than 20 analytes were submitted to calculation of retention parameters and thermodynamic sorption quantities. The received data are provided in the form accessible to comparative analysis, and they are able to find sorbing agents with the most profitable properties to solve some concrete analytic issues
siRNA Targeted to p53 Attenuates Ischemic and Cisplatin-Induced Acute Kidney Injury
Proximal tubule cells (PTCs), which are the primary site of kidney injury associated with ischemia or nephrotoxicity, are the site of oligonucleotide reabsorption within the kidney. We exploited this property to test the efficacy of siRNA targeted to p53, a pivotal protein in the apoptotic pathway, to prevent kidney injury. Naked synthetic siRNA to p53 injected intravenously 4 h after ischemic injury maximally protected both PTCs and kidney function. PTCs were the primary site for siRNA uptake within the kidney and body. Following glomerular filtration, endocytic uptake of Cy3-siRNA by PTCs was rapid and extensive, and significantly reduced ischemia-induced p53 upregulation. The duration of the siRNA effect in PTCs was 24 to 48 h, determined by levels of p53 mRNA and protein expression. Both Cy3 fluorescence and in situ hybridization of siRNA corroborated a short t½ for siRNA. The extent of renoprotection, decrease in cellular p53 and attenuation of p53-mediated apoptosis by siRNA were dose- and time-dependent. Analysis of renal histology and apoptosis revealed improved injury scores in both cortical and corticomedullary regions. siRNA to p53 was also effective in a model of cisplatin-induced kidney injury. Taken together, these data indicate that rapid delivery of siRNA to proximal tubule cells follows intravenous administration. Targeting siRNA to p53 leads to a dose-dependent attenuation of apoptotic signaling, suggesting potential therapeutic benefit for ischemic and nephrotoxic kidney injury
Baryon Budget of the Hot Circumgalactic Medium of Massive Spiral Galaxies
The baryon content around local galaxies is observed to be much less than is needed in Big Bang nucleosynthesis. Simulations indicate that a significant fraction of these "missing baryons" may be stored in a hot tenuous circumgalactic medium (CGM) around massive galaxies extending to or even beyond the virial radius of their dark matter halos. Previous observations in X-ray and Sunyaev–Zel'dovich (SZ) signals claimed that ~(1–50)% of the expected baryons are stored in a hot CGM within the virial radius. The large scatter is mainly caused by the very uncertain extrapolation of the hot gas density profile based on the detection in a small radial range (typically within 10%–20% of the virial radius). Here, we report stacking X-ray observations of six local isolated massive spiral galaxies from the CGM-MASS sample. We find that the mean density profile can be characterized by a single power law out to a galactocentric radius of ≈200 kpc (or ≈130 kpc above the 1σ background uncertainty), about half the virial radius of the dark matter halo. We can now estimate that the hot CGM within the virial radius accounts for (8 ± 4)% of the baryonic mass expected for the halos. Including the stars, the baryon fraction is (27 ± 16)%, or (39 ± 20)% by assuming a flattened density profile at r gsim 130 kpc. We conclude that the hot baryons within the virial radius of massive galaxy halos are insufficient to explain the "missing baryons.
Kukoamine A and other hydrophobic acylpolyamines: potent and selective inhibitors of Crithidia fasciculata trypanothione reductase
A Comprehensive Investigation of Metals in the Circumgalactic Medium of Nearby Dwarf Galaxies
Dwarf galaxies are found to have lost most of their metals via feedback
processes; however, there still lacks consistent assessment on the retention
rate of metals in their circumgalactic medium (CGM). Here we investigate the
metal content in the CGM of 45 isolated dwarf galaxies with
() using {\it
HST}/COS. While H I (Ly) is ubiquitously detected () within the
CGM, we find low detection rates () in C II, C IV, Si II, Si
III, and Si IV, largely consistent with literature values. Assuming these ions
form in the cool ( K) CGM with photoionization equilibrium, the
observed H I and metal column density profiles can be best explained by an
empirical model with low gas density and high volume filling factor. For a
typical galaxy with (median of the sample),
our model predicts a cool gas mass of ,
corresponding to of the galaxy's baryonic budget. Assuming a
metallicity of , we estimate that the dwarf galaxy's cool CGM
likely harbors of the metals ever produced, with the rest either in
more ionized states in the CGM or transported to the intergalactic medium. We
further examine the EAGLE simulation and show that H I and low ions may arise
from a dense cool medium, while C IV arises from a diffuse warmer medium. Our
work provides the community with a uniform dataset on dwarf galaxies' CGM that
combines our recent observations, additional archival data and literature
compilation, which can be used to test various theoretical models of dwarf
galaxies.Comment: Finalized version. Accepted for publication in Ap
- …
