40,393 research outputs found

    Chaos in Time Dependent Variational Approximations to Quantum Dynamics

    Full text link
    Dynamical chaos has recently been shown to exist in the Gaussian approximation in quantum mechanics and in the self-consistent mean field approach to studying the dynamics of quantum fields. In this study, we first show that any variational approximation to the dynamics of a quantum system based on the Dirac action principle leads to a classical Hamiltonian dynamics for the variational parameters. Since this Hamiltonian is generically nonlinear and nonintegrable, the dynamics thus generated can be chaotic, in distinction to the exact quantum evolution. We then restrict attention to a system of two biquadratically coupled quantum oscillators and study two variational schemes, the leading order large N (four canonical variables) and Hartree (six canonical variables) approximations. The chaos seen in the approximate dynamics is an artifact of the approximations: this is demonstrated by the fact that its onset occurs on the same characteristic time scale as the breakdown of the approximations when compared to numerical solutions of the time-dependent Schrodinger equation.Comment: 10 pages (12 figures), RevTeX (plus macro), uses epsf, minor typos correcte

    Exact and approximate dynamics of the quantum mechanical O(N) model

    Full text link
    We study a quantum dynamical system of N, O(N) symmetric, nonlinear oscillators as a toy model to investigate the systematics of a 1/N expansion. The closed time path (CTP) formalism melded with an expansion in 1/N is used to derive time evolution equations valid to order 1/N (next-to-leading order). The effective potential is also obtained to this order and its properties areelucidated. In order to compare theoretical predictions against numerical solutions of the time-dependent Schrodinger equation, we consider two initial conditions consistent with O(N) symmetry, one of them a quantum roll, the other a wave packet initially to one side of the potential minimum, whose center has all coordinates equal. For the case of the quantum roll we map out the domain of validity of the large-N expansion. We discuss unitarity violation in the 1/N expansion; a well-known problem faced by moment truncation techniques. The 1/N results, both static and dynamic, are also compared to those given by the Hartree variational ansatz at given values of N. We conclude that late-time behavior, where nonlinear effects are significant, is not well-described by either approximation.Comment: 16 pages, 12 figrures, revte

    Pauli equation and the method of supersymmetric factorization

    Full text link
    We consider different variants of factorization of a 2x2 matrix Schroedinger/Pauli operator in two spatial dimensions. They allow to relate its spectrum to the sum of spectra of two scalar Schroedinger operators, in a manner similar to one-dimensional Darboux transformations. We consider both the case when such factorization is reduced to the ordinary 2-dimensional SUSY QM quasifactorization and a more general case which involves covariant derivatives. The admissible classes of electromagnetic fields are described and some illustrative examples are given.Comment: 18 pages, Late

    A trap-based pulsed positron beam optimised for positronium laser spectroscopy

    Get PDF
    We describe a pulsed positron beam that is optimised for positronium (Ps) laser-spectroscopy experiments. The system is based on a two-stage Surko-type buffer gas trap that produces 4 ns wide pulses containing up to 5 × 105 positrons at a rate of 0.5-10 Hz. By implanting positrons from the trap into a suitable target material, a dilute positronium gas with an initial density of the order of 107 cm−3 is created in vacuum. This is then probed with pulsed (ns) laser systems, where various Ps-laser interactions have been observed via changes in Ps annihilation rates using a fast gamma ray detector. We demonstrate the capabilities of the apparatus and detection methodology via the observation of Rydberg positronium atoms with principal quantum numbers ranging from 11 to 22 and the Stark broadening of the n = 2 → 11 transition in electric fields

    Factorization of non-linear supersymmetry in one-dimensional Quantum Mechanics. II: proofs of theorems on reducibility

    Full text link
    In this paper, we continue to study factorization of supersymmetric (SUSY) transformations in one-dimensional Quantum Mechanics into chains of elementary Darboux transformations with nonsingular coefficients. We define the class of potentials that are invariant under the Darboux - Crum transformations and prove a number of lemmas and theorems substantiating the formulated formerly conjectures on reducibility of differential operators for spectral equivalence transformations. Analysis of the general case is performed with all the necessary proofs.Comment: 13 page

    Resumming the large-N approximation for time evolving quantum systems

    Get PDF
    In this paper we discuss two methods of resumming the leading and next to leading order in 1/N diagrams for the quartic O(N) model. These two approaches have the property that they preserve both boundedness and positivity for expectation values of operators in our numerical simulations. These approximations can be understood either in terms of a truncation to the infinitely coupled Schwinger-Dyson hierarchy of equations, or by choosing a particular two-particle irreducible vacuum energy graph in the effective action of the Cornwall-Jackiw-Tomboulis formalism. We confine our discussion to the case of quantum mechanics where the Lagrangian is L(x,x˙)=(1/2)∑i=1Nx˙i2−(g/8N)[∑i=1Nxi2−r02]2L(x,\dot{x}) = (1/2) \sum_{i=1}^{N} \dot{x}_i^2 - (g/8N) [ \sum_{i=1}^{N} x_i^2 - r_0^2 ]^{2}. The key to these approximations is to treat both the xx propagator and the x2x^2 propagator on similar footing which leads to a theory whose graphs have the same topology as QED with the x2x^2 propagator playing the role of the photon. The bare vertex approximation is obtained by replacing the exact vertex function by the bare one in the exact Schwinger-Dyson equations for the one and two point functions. The second approximation, which we call the dynamic Debye screening approximation, makes the further approximation of replacing the exact x2x^2 propagator by its value at leading order in the 1/N expansion. These two approximations are compared with exact numerical simulations for the quantum roll problem. The bare vertex approximation captures the physics at large and modest NN better than the dynamic Debye screening approximation.Comment: 30 pages, 12 figures. The color version of a few figures are separately liste

    2 and 3-dimensional Hamiltonians with Shape Invariance Symmetry

    Full text link
    Via a special dimensional reduction, that is, Fourier transforming over one of the coordinates of Casimir operator of su(2) Lie algebra and 4-oscillator Hamiltonian, we have obtained 2 and 3 dimensional Hamiltonian with shape invariance symmetry. Using this symmetry we have obtained their eigenspectrum. In the mean time we show equivalence of shape invariance symmetry and Lie algebraic symmetry of these Hamiltonians.Comment: 24 Page

    Supersymmetry, Shape Invariance and Solvability of AN−1A_{N-1} and BCNBC_{N} Calogero-Sutherland Model

    Get PDF
    Using the ideas of supersymmetry and shape invariance we re-derive the spectrum of the AN−1A_{N-1} and BCNBC_N Calogero-Sutherland model. We briefly discuss as to how to obtain the corresponding eigenfunctions. We also discuss the difficulties involved in extending this approach to the trigonometric models.Comment: 15 pages, REVTeX,No figure

    Quantum Oscillations in the Underdoped Cuprate YBa2Cu4O8

    Full text link
    We report the observation of quantum oscillations in the underdoped cuprate superconductor YBa2Cu4O8 using a tunnel-diode oscillator technique in pulsed magnetic fields up to 85T. There is a clear signal, periodic in inverse field, with frequency 660+/-15T and possible evidence for the presence of two components of slightly different frequency. The quasiparticle mass is m*=3.0+/-0.3m_e. In conjunction with the results of Doiron-Leyraud et al. for YBa2Cu3O6.5, the present measurements suggest that Fermi surface pockets are a general feature of underdoped copper oxide planes and provide information about the doping dependence of the Fermi surface.Comment: Contains revisions addressing referees' comments including a different Fig 1b. 4 pages, 4 figure

    Gauge Fields Out-Of-Equilibrium: A Gauge Invariant Formulation and the Coulomb Gauge

    Full text link
    We study the abelian Higgs model out-of-equilibrium in two different approaches, a gauge invariant formulation, proposed by Boyanovsky et al. \cite{Boyanovsky:1996dc} and in the Coulomb gauge. We show that both approaches become equivalent in a consistent one loop approximation. Furthermore, we carry out a proper renormalization for the model in order to prepare the equations for a numerical implementation. The additional degrees of freedom, which arise in gauge theories, influence the behavior of the system dramatically. A comparison with results in the 't Hooft-Feynman background gauge found by us recently, shows very good agreement.Comment: 32 pages, 8 figure
    • …
    corecore