4,034 research outputs found

    Matching methods to produce maps for pest risk analysis to resources

    Get PDF
    Decision support systems (DSSs) for pest risk mapping are invaluable for guiding pest risk analysts seeking to add maps to pest risk analyses (PRAs). Maps can help identify the area of potential establishment, the area at highest risk and the endangered area for alien plant pests. However, the production of detailed pest risk maps may require considerable time and resources and it is important to match the methods employed to the priority, time and detail required. In this paper, we apply PRATIQUE DSSs to Phytophthora austrocedrae, a pathogen of the Cupressaceae, Thaumetopoea pityocampa, the pine processionary moth, Drosophila suzukii, spotted wing Drosophila, and Thaumatotibia leucotreta, the false codling moth. We demonstrate that complex pest risk maps are not always a high priority and suggest that simple methods may be used to determine the geographic variation in relative risks posed by invasive alien species within an area of concern

    Controlling the accuracy of unconditionally stable algorithms in Cahn-Hilliard Equation

    Full text link
    Given an unconditionally stable algorithm for solving the Cahn-Hilliard equation, we present a general calculation for an analytic time step \d \tau in terms of an algorithmic time step \dt. By studying the accumulative multi-step error in Fourier space and controlling the error with arbitrary accuracy, we determine an improved driving scheme \dt=At^{2/3} and confirm the numerical results observed in a previous study \cite{Cheng1}.Comment: 4 pages, late

    Safe data structure visualisation

    Get PDF

    Strong evidence for the adaptive walk model of gene evolution in Drosophila and Arabidopsis

    Get PDF
    Understanding the dynamics of species adaptation to their environments has long been a central focus of the study of evolution. Theories of adaptation propose that populations evolve by “walking” in a fitness landscape. This “adaptive walk” is characterised by a pattern of diminishing returns, where populations further away from their fitness optimum take larger steps than those closer to their optimal conditions. Hence, we expect young genes to evolve faster and experience mutations with stronger fitness effects than older genes because they are further away from their fitness optimum. Testing this hypothesis, however, constitutes an arduous task. Young genes are small, encode proteins with a higher degree of intrinsic disorder, are expressed at lower levels, and are involved in species-specific adaptations. Since all these factors lead to increased protein evolutionary rates, they could be masking the effect of gene age. While controlling for these factors, we used population genomic data sets of Arabidopsis and Drosophila and estimated the rate of adaptive substitutions across genes from different phylostrata. We found that a gene’s evolutionary age significantly impacts the molecular rate of adaptation. Moreover, we observed that substitutions in young genes tend to have larger physicochemical effects. Our study, therefore, provides strong evidence that molecular evolution follows an adaptive walk model across a large evolutionary timescale

    Transition in housing design and thermal comfort in rural Tanzania

    Get PDF
    This study evaluates the performance of three low-income passive housing designs at providing thermal comfort for their inhabitants in temperate tropical rural Tanzania. Severe climatic conditions in these upland regions include large daily oscillations in air temperature (14°C-36°C) and high levels of solar radiation, causing overheating which affects inhabitant health and wellbeing. Inadequate shelter in these difficult climatic conditions is a widespread problem with 71% of Tanzanians living in rural areas, of which 28% of are below the national poverty line. Over the last 10 years an increasing number of houses are using modern building materials (brick or concrete walls and iron roof) rather than traditional vernacular design (mud-pole walls and thatch roof). Three designs were chosen to describe this transition. The performances of the three houses were simulated across a study year using IES and then compared against five chosen criteria to assess thermal comfort. Detailed analyses of critical times of day and specific areas of the building envelope were used to identify critical areas of design. The traditional house overheated significantly less often with smaller diurnal indoor temperature swings than the modern houses (due to its higher roof insulation and wall thermal mass). It also experienced uncomfortably low temperatures least often but maintained higher temperatures for longer during hot evenings. The modern houses outperformed the traditional house in ventilation gains with constant heat rejection throughout the day and night. The traditional house’s open structure resulted in high daytime ventilation gains and night-time heat rejection. Consideration of the position and internal gains of each room was found to be an important design factor. Across the study year the traditional design provided greater thermal comfort. However, as durability and social pressures are important factors in the choice of building materials, the design of modern materials that can mimic and improve on traditional material performance is critical to improving the health of inhabitants

    Evidence for variation in the effective population size of animal mitochondrial DNA

    Get PDF
    Background: It has recently been shown that levels of diversity in mitochondrial DNA are remarkably constant across animals of diverse census population sizes and ecologies, which has led to the suggestion that the effective population of mitochondrial DNA may be relatively constant. Results: Here we present several lines of evidence that suggest, to the contrary, that the effective population size of mtDNA does vary, and that the variation can be substantial. First, we show that levels of mitochondrial and nuclear diversity are correlated within all groups of animals we surveyed. Second, we show that the effectiveness of selection on non-synonymous mutations, as measured by the ratio of the numbers of non-synonymous and synonymous polymorphisms, is negatively correlated to levels of mitochondrial diversity. Finally, we estimate the effective population size of mitochondrial DNA in selected mammalian groups and show that it varies by at least an order of magnitude. Conclusions: We conclude that there is variation in the effective population size of mitochondria. Furthermore we suggest that the relative constancy of DNA diversity may be due to a negative correlation between the effective population size and the mutation rate per generation

    Investigation and modeling of direct toppling using a three-dimensional distinct element approach with incorporation of point cloud geometry

    Get PDF
    This is the author accepted manuscript. The final version is available from the publisher via the DOI in this recordBlock toppling instability can be a common problem in natural rock masses, especially in mining environments where excavation activity may trigger discontinuity-controlled instability by modifying the natural slope geometry. Traditional investigations of block toppling failure consider classic kinematic analyses and simplified two-dimensional limit equilibrium methods. This approach is still the most commonly adopted, but the simple two-dimensional conceptual model may often oversimplify the instability mechanisms, ignoring potential critical factors specifically related to the three-dimensional geometry. This paper uses a three-dimensional distinct element method approach applied to an example case study, identifying the critical parameters that influence direct toppling instability in an open pit environment. Terrestrial laser scanning was used to obtain detailed three-dimensional geometrical information of the slope face geometry for subsequent stability analyses. A series of sensitivity analyses on critical parameters such as friction angle, discontinuity shear and normal stiffness, discontinuity spacing, and orientation was performed, using simple conceptual three-dimensional numerical modeling. Results of the analyses revealed the importance of undertaking three-dimensional analyses for direct toppling investigations that allow identification of critical parameters. A three-dimensional distinct element analysis was then performed using a more realistic complex volumetric mesh model of the case study slope which confirmed the previous modeling results but also identified unstable blocks in high slope angle areas, providing useful information for life of mine design. The paper highlights the importance of slope geometry and fracture network orientation on potential slope instability mechanisms.European CommissionEuropean Commissio
    corecore