7 research outputs found

    Turning spent coffee grounds into sustainable precursors for the fabrication of carbon dots

    No full text
    Spent coffee grounds (SCGs) are known for containing many organic compounds of interest, including carbohydrates, lipids, phenolic compounds and proteins. Therefore, we investigated them as a potential source to obtain carbon dots (CDs) via a nanotechnology approach. Herein, a comparison was performed between CDs produced by SCGs and classic precursors (e.g., citric acid and urea). The SCG-based CDs were obtained via the one-pot and solvent-free carbonization of solid samples, generating nanosized particles (2.1–3.9 nm). These nanoparticles exhibited a blue fluorescence with moderate quantum yields (2.9–5.8%) and an excitation-dependent emission characteristic of carbon dots. SCG-based CDs showed potential as environmentally relevant fluorescent probes for Fe3+ in water. More importantly, life cycle assessment studies validated the production of CDs from SCG samples as a more environmentally sustainable route, as compared to those using classic reported precursors, when considering either a weight-or a function-based functional unit. © 2020 by the authors. Licensee MDPI, Basel, Switzerland

    Turning Spent Coffee Grounds into Sustainable Precursors for the Fabrication of Carbon Dots

    No full text
    Spent coffee grounds (SCGs) are known for containing many organic compounds of interest, including carbohydrates, lipids, phenolic compounds and proteins. Therefore, we investigated them as a potential source to obtain carbon dots (CDs) via a nanotechnology approach. Herein, a comparison was performed between CDs produced by SCGs and classic precursors (e.g., citric acid and urea). The SCG-based CDs were obtained via the one-pot and solvent-free carbonization of solid samples, generating nanosized particles (2.1–3.9 nm). These nanoparticles exhibited a blue fluorescence with moderate quantum yields (2.9–5.8%) and an excitation-dependent emission characteristic of carbon dots. SCG-based CDs showed potential as environmentally relevant fluorescent probes for Fe3+ in water. More importantly, life cycle assessment studies validated the production of CDs from SCG samples as a more environmentally sustainable route, as compared to those using classic reported precursors, when considering either a weight- or a function-based functional unit

    Facile fabrication of hybrid titanium(IV) isopropoxide/pozzolan nanosheets (TnS-Pz) of high photocatalytic activity: characterization and application for Cr(VI) reduction in an aqueous solution

    Get PDF
    This paper presents the synthesis of a hybrid material through the use of natural pozzolan and titanium(IV) isopropoxide using the sol-gel method and its application in the photocatalytic hexavalent chromium reduction. The characterization data indicated a mesoporous material possessing a surface area of 271.7 m(2) g(-1). The morphology studies (SEM and TEM) showed nanosheet hybrid structures. The analysis of DRUV, FTIR, XRD, and Mossbauer spectroscopy provides a different electronic structure of the synthetized material when compared with the originals, proving the hybridization process between pozzolan and titanium(IV) isopropoxide. The photocatalytic reduction of Cr(VI) to Cr(III) using the hybrid material showed a better performance than conventional photocatalysts (precursor and TiO2-P25). Operational conditions such as chromium initial concentration (0.02-0.20 mM), solution pH (3-6), and type of scavenger (citric or tartaric acid) were evaluated in order to determine the best experimental conditions for the Cr(VI) photoreduction. At their optimum (catalyst load of 15 mg L-1, tartaric acid as scavenger, [scavenger](0)/[Cr(VI)](0) M ratio = 3:1, pH 3, and 25 degrees C), the total photoreduction of 0.20 mM Cr(VI) was achieved in 180 min. The novel hybrid materials synthesized from pozzolan and titanium(IV) isopropoxide showed to be a potential catalyst for the Cr(VI) reduction in aqueous solution
    corecore