306 research outputs found

    Expression of recombinant multi-coloured fluorescent antibodies in gor -/trxB- E. coli cytoplasm

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Antibody-fluorophore conjugates are invaluable reagents used in contemporary molecular cell biology for imaging, cell sorting and tracking intracellular events. However they suffer in some cases from batch to batch variation, partial loss of binding and susceptibility to photo-bleaching. In theory, these issues can all be addressed by using recombinant antibody fused directly to genetically encoded fluorescent reporters. However, single-chain fragment variable domains linked by long flexible linkers are themselves prone to disassociation and aggregation, and in some cases with isoelectric points incompatible with use in physiologically relevant milieu. Here we describe a general approach that permits fully functional intracellular production of a range of coloured fluorescent recombinant antibodies with optimally orientated V<sub>H</sub>/V<sub>L </sub>interfaces and isoelectric points compatible for use in physiological solutions at pH 7.4 with a binding site to fluorophore stoichiometry of 1:1.</p> <p>Results</p> <p>Here we report the design, assembly, intracellular bacterial production and purification of a panel of novel antibody fluorescent protein fusion constructs. The insertion of monomeric fluorescent protein derived from either <it>Discosoma </it>or <it>Aequorea </it>in-between the variable regions of anti-p185<sup>HER2-ECD </sup>antibody 4D5-8 resulted in optimal V<sub>H</sub>/V<sub>L </sub>interface interactions to create soluble coloured antibodies each with a single binding site, with isoelectric points of 6.5- 6. The fluorescent antibodies used in cell staining studies with SK-BR-3 cells retained the fluorophore properties and antibody specificity functions, whereas the conventional 4D5-8 single chain antibody with a (Gly<sub>4</sub>Ser)<sub>3 </sub>linker precipitated at physiological pH 7.4.</p> <p>Conclusions</p> <p>This modular monomeric recombinant fluorescent antibody platform may be used to create a range of recombinant coloured antibody molecules for quantitative <it>in situ, in vivo </it>and <it>ex vivo </it>imaging, cell sorting and cell trafficking studies. Assembling the single chain antibody with monomeric fluorescent protein linker facilitates optimal variable domain pairing and alters the isoelectric point of the recombinant 4D5-8 protein conferring solubility at physiological pH 7.4. The efficient intracellular expression of these functional molecules opens up the possibility of developing an alternative approach for tagging intracellular targets with fluorescent proteins for a range of molecular cell biology imaging studies.</p

    Russian assimilatory palatalization is incomplete neutralization

    Full text link
    Incomplete neutralization refers to phonetic traces of underlying contrasts in phonologically neutralizing contexts. The present study examines one such context: Russian assimilatory palatalization in C+j sequences. Russian contrasts plain and palatalized consonants, with the plain consonants having a secondary articulation involving retraction of the tongue dorsum (velarization/uvularization). However, Russian also has stop-glide sequences that form near-minimal pairs with palatalized stops. In the environment preceding palatal glides, the contrast between palatalized and plain consonants is neutralized, due to the palatalization of the plain stop (assimilatory palatalization). The purpose of the study is to explore whether the neutralization is complete. To do so, we conducted an electromagnetic articulography (EMA) experiment examining temporal coordination and the spatial position of the tongue body in underlyingly palatalized consonants and those derived from assimilatory palatalization. Articulatory results from four native speakers of Russian revealed that gestures in both conditions are coordinated as complex segments, i.e., they are palatalized consonants. However, there are differences across conditions consistent with the residual presence of a tongue dorsum retraction gesture in the plain obstruents. We conclude that neutralization of the plain-palatal contrast in Russian is incomplete; consonants in the assimilatory palatalization condition exhibit inter-gestural coordination characteristic of palatalized consonants along with residual evidence of an underlying tongue dorsum retraction (velarization/uvularization) gesture

    Abstractness of human speech sound representations

    Get PDF
    We argue, based on a study of brain responses to speech sound differences in Japanese, that memory encoding of functional speech sounds-phonemes-are highly abstract. As an example, we provide evidence for a theory where the consonants/p t k b d g/ are not only made up of symbolic features but are underspecified with respect to voicing or laryngeal features, and that languages differ with respect to which feature value is underspecified. In a previous study we showed that voiced stops are underspecified in English [Hestvik, A., & Durvasula, K. (2016). Neurobiological evidence for voicing underspecification in English. Brain and Language], as shown by asymmetries in Mismatch Negativity responses to /t/ and /d/. In the current study, we test the prediction that the opposite asymmetry should be observed in Japanese, if voiceless stops are underspecified in that language. Our results confirm this prediction. This matches a linguistic architecture where phonemes are highly abstract and do not encode actual physical characteristics of the corresponding speech sounds, but rather different subsets of abstract distinctive features

    African genomes illuminate the early history and transition to selfing in Arabidopsis thaliana

    Get PDF
    Over the past 20 y, many studies have examined the history of the plant ecological and molecular model, Arabidopsis thaliana, in Europe and North America. Although these studies informed us about the recent history of the species, the early history has remained elusive. In a large-scale genomic analysis of African A. thaliana, we sequenced the genomes of 78 modern and herbarium samples from Africa and analyzed these together with over 1,000 previously sequenced Eurasian samples. In striking contrast to expectations, we find that all African individuals sampled are native to this continent, including those from sub-Saharan Africa. Moreover, we show that Africa harbors the greatest variation and represents the deepest history in the A. thaliana lineage. Our results also reveal evidence that selfing, a major defining characteristic of the species, evolved in a single geographic region, best represented today within Africa. Demographic inference supports a model in which the ancestral A. thaliana population began to split by 120-90 kya, during the last interglacial and Abbassia pluvial, and Eurasian populations subsequently separated from one another at around 40 kya. This bears striking similarities to the patterns observed for diverse species, including humans, implying a key role for climatic events during interglacial and pluvial periods in shaping the histories and current distributions of a wide range of species

    African genomes illuminate the early history and transition to selfing in Arabidopsis thaliana

    Get PDF
    Over the past 20 y, many studies have examined the history of the plant ecological and molecular model, Arabidopsis thaliana, in Europe and North America. Although these studies informed us about the recent history of the species, the early history has remained elusive. In a large-scale genomic analysis of African A. thaliana, we sequenced the genomes of 78 modern and herbarium samples from Africa and analyzed these together with over 1,000 previously sequenced Eurasian samples. In striking contrast to expectations, we find that all African individuals sampled are native to this continent, including those from sub-Saharan Africa. Moreover, we show that Africa harbors the greatest variation and represents the deepest history in the A. thaliana lineage. Our results also reveal evidence that selfing, a major defining characteristic of the species, evolved in a single geographic region, best represented today within Africa. Demographic inference supports a model in which the ancestral A. thaliana population began to split by 120-90 kya, during the last interglacial and Abbassia pluvial, and Eurasian populations subsequently separated from one another at around 40 kya. This bears striking similarities to the patterns observed for diverse species, including humans, implying a key role for climatic events during interglacial and pluvial periods in shaping the histories and current distributions of a wide range of species.Peer Reviewe

    Gene expression drives the evolution of dominance.

    Get PDF
    Dominance is a fundamental concept in molecular genetics and has implications for understanding patterns of genetic variation, evolution, and complex traits. However, despite its importance, the degree of dominance in natural populations is poorly quantified. Here, we leverage multiple mating systems in natural populations of Arabidopsis to co-estimate the distribution of fitness effects and dominance coefficients of new amino acid changing mutations. We find that more deleterious mutations are more likely to be recessive than less deleterious mutations. Further, this pattern holds across gene categories, but varies with the connectivity and expression patterns of genes. Our work argues that dominance arises as a consequence of the functional importance of genes and their optimal expression levels

    Simultaneous clinical resolution of focal segmental glomerulosclerosis associated with chronic lymphocytic leukaemia treated with fludarabine, cyclophosphamide and rituximab

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Although renal involvement in advanced haematological malignancies is common, glomerulonephritis associated with lymphoproliferative disorders is rare, and the related pathogenetic mechanisms are still poorly understood. We present a rare case of chronic lymphocytic leukaemia(CLL)-associated focal segmental glomerulosclerosis with nephrotic-range proteinuria.</p> <p>Case presentation</p> <p>A 53-year-old Caucasian man, previously healthy, with no history of hypertension, alcohol use or smoking presented with rapid weight gain, massive peripheral oedema, and hypertension. Laboratory findings included a white blood cell count of 49,800 cells/mm<sup>3 </sup>with an absolute lymphocyte count of 47,000 cells/mm<sup>3</sup>, serum albumin of 2.3 g/dL, urea 65 mg/dL, and creatinine 1.5 mg/dL. A 24-hour urine collection contained 7.1 g protein and significant haematuria. A peripheral blood smear showed mature lymphocytosis and smudge cells. Diagnostic imaging showed mild paraaortic lymphadenopathy with no renal abnormalities. Bone marrow aspiration and trephine biopsy showed diffuse and focal infiltration with B-CLL lymphocytes. Percutaneous renal biopsy revealed total sclerosis in 3/21(14%) of the glomeruli and focal and segmental solidification and sclerosis in 4/21 (19%) glomeruli. A regimen of fludarabine, cyclophosphamide and rituximab was successful in inducing remission of the CLL and clinical resolution of the nephritic-range proteinuria.</p> <p>Conclusions</p> <p>A multidisciplinary approach to monitor both the malignancy and the glomerular lesions is crucial for the optimal management of paraneoplastic glomerulonephritis. Although chemotherapy with fludarabine, cyclophosphamide and rituximab successfully treated CLL-associated nephrotic syndrome in our patient, further studies are required to confirm efficacy in this setting.</p

    Bisindolylmaleimide IX: a Novel Anti-SARS-CoV2 Agent Targeting Viral Main Protease 3CLpro Demonstrated by Virtual Screening Pipeline and In-Vitro Validation Assays

    Get PDF
    SARS-CoV-2, the virus that causes COVID-19 consists of several enzymes with essential functions within its proteome. Here, we focused on repurposing approved and investigational drugs/compounds. We targeted seven proteins with enzymatic activities known to be essential at different stages of the viral cycle including PLpro, 3CLpro, RdRP, Helicase, ExoN, NendoU, and 2′-O-MT. For virtual screening, energy minimization of a crystal structure of the modeled protein was carried out using the Protein Preparation Wizard (Schrodinger LLC 2020-1). Following active site selection based on data mining and COACH predictions, we performed a high-throughput virtual screen of drugs and investigational molecules (n = 5903). The screening was performed against viral targets using three sequential docking modes (i.e., HTVS, SP, and XP). Virtual screening identified ∼290 potential inhibitors based on the criteria of energy, docking parameters, ligand, and binding site strain and score. Drugs specific to each target protein were further analyzed for binding free energy perturbation by molecular mechanics (prime MM-GBSA) and pruning the hits to the top 32 candidates. The top lead from each target pool was further subjected to molecular dynamics simulation using the Desmond module. The resulting top eight hits were tested for their SARS-CoV-2 anti-viral activity in-vitro. Among these, a known inhibitor of protein kinase C isoforms, Bisindolylmaleimide IX (BIM IX), was found to be a potent inhibitor of SARS-CoV-2. Further, target validation through enzymatic assays confirmed 3CLpro to be the target. This is the first study that has showcased BIM IX as a COVID-19 inhibitor thereby validating our pipeline

    The Wolbachia Genome of Brugia malayi: Endosymbiont Evolution within a Human Pathogenic Nematode

    Get PDF
    Complete genome DNA sequence and analysis is presented for Wolbachia, the obligate alpha-proteobacterial endosymbiont required for fertility and survival of the human filarial parasitic nematode Brugia malayi. Although, quantitatively, the genome is even more degraded than those of closely related Rickettsia species, Wolbachia has retained more intact metabolic pathways. The ability to provide riboflavin, flavin adenine dinucleotide, heme, and nucleotides is likely to be Wolbachia's principal contribution to the mutualistic relationship, whereas the host nematode likely supplies amino acids required for Wolbachia growth. Genome comparison of the Wolbachia endosymbiont of B. malayi (wBm) with the Wolbachia endosymbiont of Drosophila melanogaster (wMel) shows that they share similar metabolic trends, although their genomes show a high degree of genome shuffling. In contrast to wMel, wBm contains no prophage and has a reduced level of repeated DNA. Both Wolbachia have lost a considerable number of membrane biogenesis genes that apparently make them unable to synthesize lipid A, the usual component of proteobacterial membranes. However, differences in their peptidoglycan structures may reflect the mutualistic lifestyle of wBm in contrast to the parasitic lifestyle of wMel. The smaller genome size of wBm, relative to wMel, may reflect the loss of genes required for infecting host cells and avoiding host defense systems. Analysis of this first sequenced endosymbiont genome from a filarial nematode provides insight into endosymbiont evolution and additionally provides new potential targets for elimination of cutaneous and lymphatic human filarial disease

    A community-maintained standard library of population genetic models

    Get PDF
    The explosion in population genomic data demands ever more complex modes of analysis, and increasingly, these analyses depend on sophisticated simulations. Recent advances in population genetic simulation have made it possible to simulate large and complex models, but specifying such models for a particular simulation engine remains a difficult and error-prone task. Computational genetics researchers currently re-implement simulation models independently, leading to inconsistency and duplication of effort. This situation presents a major barrier to empirical researchers seeking to use simulations for power analyses of upcoming studies or sanity checks on existing genomic data. Population genetics, as a field, also lacks standard benchmarks by which new tools for inference might be measured. Here, we describe a new resource, stdpopsim, that attempts to rectify this situation. Stdpopsim is a community-driven open source project, which provides easy access to a growing catalog of published simulation models from a range of organisms and supports multiple simulation engine backends. This resource is available as a well-documented python library with a simple command-line interface. We share some examples demonstrating how stdpopsim can be used to systematically compare demographic inference methods, and we encourage a broader community of developers to contribute to this growing resource.Open access journalThis item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]
    corecore