593 research outputs found
Galilean type IIA backgrounds and a map
We obtain non-relativistic AdS4 X CP3 solutions with dynamical exponent 3 in
type IIA string theory, both with and without Romans mass. The
compactifications to four dimensions are found to describe Proca fields in
anti-de Sitter spacetime. This leads us to conclude that the massive and
massless IIA theories should be identified in four dimensions and the Romans
mass should be identified with the `flux' along CP3 in a definite manner. From
supergravity point of view, it is suggestive of some four-dimensional symmetry
that rotates Romans mass into the flux along CP3. We also provide M-theory
Galilean ABJM background which gives rise to the nonrelativistic type IIA
solution.Comment: 10 pages;v2: major revisions, errors on supersymmetry corrected and
references added; to be published in MPL
Special limits and non-relativistic solutions
We study special vanishing horizon limit of `boosted' black D3-branes having
a compact light-cone direction. The type IIB solution obtained by taking such a
zero temperature limit is found to describe a nonrelativistic system with
dynamical exponent 3. We discuss about such limits in M2-branes case also.Comment: 10 pages; V2: various changes in interpretations including title; no
change in mathematical results, V3: minor font typo in eq.(7) remove
Momentum relaxation from the fluid/gravity correspondence
We provide a hydrodynamical description of a holographic theory with broken
translation invariance. We use the fluid/gravity correspondence to
systematically obtain both the constitutive relations for the currents and the
Ward identity for momentum relaxation in a derivative expansion. Beyond leading
order in the strength of momentum relaxation, our results differ from a model
previously proposed by Hartnoll et al. As an application of these techniques we
consider charge and heat transport in the boundary theory. We derive the low
frequency thermoelectric transport coefficients of the holographic theory from
the linearised hydrodynamics.Comment: 19 pages + appendix, v2: references added, typos corrected, v3:
version published in JHE
Doping the holographic Mott insulator
Mott insulators form because of strong electron repulsions, being at the
heart of strongly correlated electron physics. Conventionally these are
understood as classical "traffic jams" of electrons described by a short-ranged
entangled product ground state. Exploiting the holographic duality, which maps
the physics of densely entangled matter onto gravitational black hole physics,
we show how Mott-insulators can be constructed departing from entangled
non-Fermi liquid metallic states, such as the strange metals found in cuprate
superconductors. These "entangled Mott insulators" have traits in common with
the "classical" Mott insulators, such as the formation of Mott gap in the
optical conductivity, super-exchange-like interactions, and form "stripes" when
doped. They also exhibit new properties: the ordering wave vectors are detached
from the number of electrons in the unit cell, and the DC resistivity diverges
algebraically instead of exponentially as function of temperature. These
results may shed light on the mysterious ordering phenomena observed in
underdoped cuprates.Comment: 27 pages, 9 figures. Accepted in Nature Physic
Quantum critical transport and the hall angle in holographic models
We study the Hall conductivity in holographic models where translational invariance is broken by a lattice. We show that generic holographic theories will display a different temperature dependence in the Hall angle as to the dc conductivity. Our results suggest a general mechanism for obtaining an anomalous scaling of the Hall angle in strongly interacting quantum critical systems
Holographic flows to IR Lifshitz spacetimes
Recently we studied `vanishing' horizon limits of `boosted' black D3-brane
geometry \cite{hsnr}. The type IIB solutions obtained by taking these special
double limits were found to describe nonrelativistic Lifshitz spacetimes at
zero temperature. In the present work we study these limits for TsT black-hole
solutions which include -field. The new Galilean solutions describe a
holographic RG flow from Schr\"odinger () spacetime in UV to a Lifshitz
universe () in the IR.Comment: 10 pages; v2: A bad typo in eq.8 corrected; v3: Discussion and
reference on Kaigorodov spaces included, correction in sec-3, to be published
in JHE
Universal scaling properties of extremal cohesive holographic phases
We show that strongly-coupled, translation-invariant holographic IR phases at
finite density can be classified according to the scaling behaviour of the
metric, the electric potential and the electric flux introducing four critical
exponents, independently of the details of the setup. Solutions fall into two
classes, depending on whether they break relativistic symmetry or not. The
critical exponents determine key properties of these phases, like thermodynamic
stability, the (ir)relevant deformations around them, the low-frequency scaling
of the optical conductivity and the nature of the spectrum for electric
perturbations. We also study the scaling behaviour of the electric flux through
bulk minimal surfaces using the Hartnoll-Radicevic order parameter, and
characterize the deviation from the Ryu-Takayanagi prescription in terms of the
critical exponents.Comment: v4: corrected a typo in eqn (3.29), now (3.28). Conclusions unchange
Holographic Charge Oscillations
The Reissner-Nordström black hole provides the prototypical description of a holographic system at finite density. We study the response of this system to the presence of a local, charged impurity. Below a critical temperature, the induced charge density, which screens the impurity, exhibits oscillations. These oscillations can be traced to the singularities in the density-density correlation function moving in the complex momentum plane. At finite temperature, the oscillations are very similar to the Friedel oscillations seen in Fermi liquids. However, at zero temperature the oscillations in the black hole background remain exponentially damped, while Friedel oscillations relax to a power-law
Magnetic effects in a holographic Fermi-like liquid
We explore the magnetic properties of the Fermi-like liquid represented by
the D3-D7' system. The system exhibits interesting magnetic properties such as
ferromagnetism and an anomalous Hall effect, which are due to the Chern-Simons
term in the effective gravitational action. We investigate the spectrum of
quasi-normal modes in the presence of a magnetic field and show that the
magnetic field mitigates the instability towards a striped phase. In addition,
we find a critical magnetic field above which the zero sound mode becomes
massive.Comment: 18 pages, 15 figure
Universality and exactness of Schrodinger geometries in string and M-theory
We propose an organizing principle for classifying and constructing
Schrodinger-invariant solutions within string theory and M-theory, based on the
idea that such solutions represent nonlinear completions of linearized vector
and graviton Kaluza-Klein excitations of AdS compactifications. A crucial
simplification, derived from the symmetry of AdS, is that the nonlinearities
appear only quadratically. Accordingly, every AdS vacuum admits infinite
families of Schrodinger deformations parameterized by the dynamical exponent z.
We exhibit the ease of finding these solutions by presenting three new
constructions: two from M5 branes, both wrapped and extended, and one from the
D1-D5 (and S-dual F1-NS5) system. From the boundary perspective, perturbing a
CFT by a null vector operator can lead to nonzero beta-functions for spin-2
operators; however, symmetry restricts them to be at most quadratic in
couplings. This point of view also allows us to easily prove nonrenormalization
theorems: for any Sch(z) solution of two-derivative supergravity constructed in
the above manner, z is uncorrected to all orders in higher derivative
corrections if the deforming KK mode lies in a short multiplet of an AdS
supergroup. Furthermore, we find infinite classes of 1/4 BPS solutions with
4-,5- and 7-dimensional Schrodinger symmetry that are exact.Comment: 31 pages, plus appendices; v2, minor corrections, added refs, slight
change in interpretation in section 2.3, new Schrodinger and Lifshitz
solutions included; v3, clarifications in sections 2 and 3 regarding
existence of solutions and multi-trace operator
- …