66 research outputs found

    Out-of-equilibrium dynamics in a gaussian trap model

    Full text link
    The violations of the fluctuation-dissipation theorem are analyzed for a trap model with a gausssian density of states. In this model, the system reaches thermal equilibrium for long times after a quench to any finite temperature and therefore all aging effect are of a transient nature. For not too long times after the quench it is found that the so-called fluctuation-dissipation ratio tends to a non-trivial limit, thus inicating the possibility for the definition of a time scale dependent effective temperature. However, different definitions of the effective temperature yield distinct results. In particular plots of the integrated response versus the correlation function strongly depend on the way they are constructed. Also the definition of effective temperatures in the frequency domain is not unique for the model considered. This may have some implications for the interpretation of results from computer simulations and experimental determinations of effective temperatures.Comment: Proceedings of the workshop on non-equilibrium phenomena in supercooled fluids, glasses and amorphous materials (17-22 September, Pisa

    Dynamic heterogeneities in the out-of-equilibrium dynamics of simple spherical spin models

    Full text link
    The response of spherical two-spin interaction models, the spherical ferromagnet (s-FM) and the spherical Sherrington-Kirkpatrick (s-SK) model, is calculated for the protocol of the so-called nonresonant hole burning experiment (NHB) for temperatures below the respective critical temperatures. It is shown that it is possible to select dynamic features in the out-of-equilibrium dynamics of both models, one of the hallmarks of dynamic heterogeneities. The behavior of the s-SK model and the s-FM in three dimensions is very similar, showing dynamic heterogeneities in the long time behavior, i.e. in the aging regime. The appearence of dynamic heterogeneities in the s-SK model explicitly demonstrates that these are not necessarily related to {\it spatial} heterogeneities. For the s-FM it is shown that the nature of the dynamic heterogeneities changes as a function of dimensionality. With incresing dimension the frequency selectivity of the NHB diminishes and the dynamics in the mean-field limit of the s-FM model becomes homogeneous.Comment: 16 pages, 8 figure

    Memory effects in the relaxation of the Gaussian trap model

    Full text link
    We investigate the memory effect in a simple model for glassy relaxation, a trap model with a Gaussian density of states. In this model thermal equilibrium is reached at all finite temperatures and therefore we can consider jumps from low to high temperatures in addition to the quenches usually considered in aging studies. We show that the evolution of the energy following the Kovacs-protocol can approximately be expressed as a difference of two monotonously decaying functions and thus show the existence of a so-called Kovacs hump whenever these functions are not single exponentials. It is well established that the Kovacs effect also occurs in the linear response regime and we show that most of the gross features do not change dramatically when large temperature jumps are considered. However, there is one distinguishing feature that only exists beyond the linear regime which we discuss in detail. For the memory experiment with 'inverted' temperatures, i.e. jumping up and then down again, we find a very similar behavior apart from an opposite sign of the hump.Comment: 16 pages, 13 figure

    Rotational Correlation Functions of Single Molecules

    Full text link
    Single molecule rotational correlation functions are analyzed for several reorientation geometries. Even for the simplest model of isotropic rotational diffusion our findings predict non-exponential correlation functions to be observed by polarization sensitive single molecule fluorescence microscopy. This may have a deep impact on interpreting the results of molecular reorientation measurements in heterogeneous environments.Comment: 5 pages, 4 figure

    Dielectric and thermal relaxation in the energy landscape

    Full text link
    We derive an energy landscape interpretation of dielectric relaxation times in undercooled liquids, comparing it to the traditional Debye and Gemant-DiMarzio-Bishop pictures. The interaction between different local structural rearrangements in the energy landscape explains qualitatively the recently observed splitting of the flow process into an initial and a final stage. The initial mechanical relaxation stage is attributed to hopping processes, the final thermal or structural relaxation stage to the decay of the local double-well potentials. The energy landscape concept provides an explanation for the equality of thermal and dielectric relaxation times. The equality itself is once more demonstrated on the basis of literature data for salol.Comment: 7 pages, 3 figures, 41 references, Workshop Disordered Systems, Molveno 2006, submitted to Philosophical Magazin

    Non-Arrhenius Behavior of Secondary Relaxation in Supercooled Liquids

    Full text link
    Dielectric relaxation spectroscopy (1 Hz - 20 GHz) has been performed on supercooled glass-formers from the temperature of glass transition (T_g) up to that of melting. Precise measurements particularly in the frequencies of MHz-order have revealed that the temperature dependences of secondary beta-relaxation times deviate from the Arrhenius relation in well above T_g. Consequently, our results indicate that the beta-process merges into the primary alpha-mode around the melting temperature, and not at the dynamical transition point T which is approximately equal to 1.2 T_g.Comment: 4 pages, 4 figures, revtex

    Nonequilibrium Linear Response for Markov Dynamics, II: Inertial Dynamics

    Full text link
    We continue our study of the linear response of a nonequilibrium system. This Part II concentrates on models of open and driven inertial dynamics but the structure and the interpretation of the result remain unchanged: the response can be expressed as a sum of two temporal correlations in the unperturbed system, one entropic, the other frenetic. The decomposition arises from the (anti)symmetry under time-reversal on the level of the nonequilibrium action. The response formula involves a statistical averaging over explicitly known observables but, in contrast with the equilibrium situation, they depend on the model dynamics in terms of an excess in dynamical activity. As an example, the Einstein relation between mobility and diffusion constant is modified by a correlation term between the position and the momentum of the particle

    Dynamical Heterogeneities Below the Glass Transition

    Full text link
    We present molecular dynamics simulations of a binary Lennard-Jones mixture at temperatures below the kinetic glass transition. The ``mobility'' of a particle is characterized by the amplitude of its fluctuation around its average position. The 5% particles with the largest/smallest mean amplitude are thus defined as the relatively most mobile/immobile particles. We investigate for these 5% particles their spatial distribution and find them to be distributed very heterogeneously in that mobile as well as immobile particles form clusters. The reason for this dynamic heterogeneity is traced back to the fact that mobile/immobile particles are surrounded by fewer/more neighbors which form an effectively wider/narrower cage. The dependence of our results on the length of the simulation run indicates that individual particles have a characteristic mobility time scale, which can be approximated via the non-Gaussian parameter.Comment: revtex, 10 pages, 20 postscript figure

    Harmonic Vibrational Excitations in Disordered Solids and the "Boson Peak"

    Full text link
    We consider a system of coupled classical harmonic oscillators with spatially fluctuating nearest-neighbor force constants on a simple cubic lattice. The model is solved both by numerically diagonalizing the Hamiltonian and by applying the single-bond coherent potential approximation. The results for the density of states g(ω)g(\omega) are in excellent agreement with each other. As the degree of disorder is increased the system becomes unstable due to the presence of negative force constants. If the system is near the borderline of stability a low-frequency peak appears in the reduced density of states g(ω)/ω2g(\omega)/\omega^2 as a precursor of the instability. We argue that this peak is the analogon of the "boson peak", observed in structural glasses. By means of the level distance statistics we show that the peak is not associated with localized states
    • 

    corecore