9,559 research outputs found
On periodic water waves with Coriolis effects and isobaric streamlines
In this paper we prove that solutions of the f-plane approximation for
equatorial geophysical deep water waves, which have the property that the
pressure is constant along the streamlines and do not possess stagnation
points,are Gerstner-type waves. Furthermore, for waves traveling over a flat
bed, we prove that there are only laminar flow solutions with these properties.Comment: To appear in Journal of Nonlinear Mathematical Physics; 15 page
Global well-posedness for the critical 2D dissipative quasi-geostrophic equation
We give an elementary proof of the global well-posedness for the critical 2D
dissipative quasi-geostrophic equation. The argument is based on a non-local
maximum principle involving appropriate moduli of continuity.Comment: 7 page
Particle trajectories in linearized irrotational shallow water flows
We investigate the particle trajectories in an irrotational shallow water
flow over a flat bed as periodic waves propagate on the water's free surface.
Within the linear water wave theory, we show that there are no closed orbits
for the water particles beneath the irrotational shallow water waves. Depending
on the strength of underlying uniform current, we obtain that some particle
trajectories are undulating path to the right or to the left, some are looping
curves with a drift to the right and others are parabolic curves or curves
which have only one loop
On the Cauchy problem for a nonlinearly dispersive wave equation
We establish the local well-posedness for a new nonlinearly dispersive wave
equation and we show that the equation has solutions that exist for indefinite
times as well as solutions which blowup in finite times. Furthermore, we derive
an explosion criterion for the equation and we give a sharp estimate from below
for the existence time of solutions with smooth initial data.Comment: arxiv version is already officia
On the particle paths and the stagnation points in small-amplitude deep-water waves
In order to obtain quite precise information about the shape of the particle
paths below small-amplitude gravity waves travelling on irrotational deep
water, analytic solutions of the nonlinear differential equation system
describing the particle motion are provided. All these solutions are not closed
curves. Some particle trajectories are peakon-like, others can be expressed
with the aid of the Jacobi elliptic functions or with the aid of the
hyperelliptic functions. Remarks on the stagnation points of the
small-amplitude irrotational deep-water waves are also made.Comment: to appear in J. Math. Fluid Mech. arXiv admin note: text overlap with
arXiv:1106.382
Equations of the Camassa-Holm Hierarchy
The squared eigenfunctions of the spectral problem associated with the
Camassa-Holm (CH) equation represent a complete basis of functions, which helps
to describe the inverse scattering transform for the CH hierarchy as a
generalized Fourier transform (GFT). All the fundamental properties of the CH
equation, such as the integrals of motion, the description of the equations of
the whole hierarchy, and their Hamiltonian structures, can be naturally
expressed using the completeness relation and the recursion operator, whose
eigenfunctions are the squared solutions. Using the GFT, we explicitly describe
some members of the CH hierarchy, including integrable deformations for the CH
equation. We also show that solutions of some - dimensional members of
the CH hierarchy can be constructed using results for the inverse scattering
transform for the CH equation. We give an example of the peakon solution of one
such equation.Comment: 10 page
Relevance of coordinate and particle-number scaling in density functional theory
We discuss a -dependent family of electronic density scalings of the
form in the context of
density functional theory. In particular, we consider the following special
cases: the Thomas-Fermi scaling ( and ), which is
crucial for the semiclassical theory of neutral atoms; the uniform-electron-gas
scaling ( and ), that is important in the
semiclassical theory of metallic clusters; the homogeneous density scaling
() which can be related to the self-interaction problem in density
functional theory when ; the fractional scaling ( and
), that is important for atom and molecule fragmentation; and
the strong-correlation scaling ( and ) that is
important to describe the strong correlation limit.
The results of our work provide evidence for the importance of this family of
scalings in semiclassical and quantum theory of electronic systems, and
indicate that these scaling properties must be considered as important
constraints in the construction of new approximate density functionals. We also
show, using the uniform-electron-gas scaling, that the curvature energy of
metallic clusters is related to the second-order gradient expansion of kinetic
and exchange-correlation energies.Comment: 13 pages, 3 figures, accepted for publication on PR
Steady water waves with multiple critical layers: interior dynamics
We study small-amplitude steady water waves with multiple critical layers.
Those are rotational two-dimensional gravity-waves propagating over a perfect
fluid of finite depth. It is found that arbitrarily many critical layers with
cat's-eye vortices are possible, with different structure at different levels
within the fluid. The corresponding vorticity depends linearly on the stream
function.Comment: 14 pages, 3 figures. As accepted for publication in J. Math. Fluid
Mec
A stochastic perturbation of inviscid flows
We prove existence and regularity of the stochastic flows used in the
stochastic Lagrangian formulation of the incompressible Navier-Stokes equations
(with periodic boundary conditions), and consequently obtain a
\holderspace{k}{\alpha} local existence result for the Navier-Stokes
equations. Our estimates are independent of viscosity, allowing us to consider
the inviscid limit. We show that as , solutions of the stochastic
Lagrangian formulation (with periodic boundary conditions) converge to
solutions of the Euler equations at the rate of .Comment: 13 pages, no figures
- …
