9,129 research outputs found
The structure and radiation spectra of illuminated accretion discs in AGN. I. Moderate illumination
We present detailed computations of the vertical structure of an accretion
disc illuminated by hard X-ray radiation with the code {\sc titan-noar}
suitable for Compton thick media. The energy generated via accretion is
dissipated partially in the cold disc as well as in the X-ray source. We study
the differences between the case where the X-ray source is in the form of a
lamp post above the accretion disc and the case of a heavy corona. We consider
radiative heating via Comptonization together with heating via photo-absorption
on numerous heavy elements as carbon, oxygen, silicon, iron. The transfer in
lines is precisely calculated. A better description of the heating/cooling
through the inclusion of line transfer, a correct description of the
temperature in the deeper layers, a correct description of the entire disc
vertical structure, as well as the study of the possible coronal pressure
effect, constitute an improvement in comparison to previous works. We show that
exact calculations of hydrostatic equilibrium and determination of the disc
thickness has a crucial impact on the optical depth of the hot illuminated
zone. We assume a moderate illumination where the viscous flux equals the X-ray
radiation flux. A highly ionized skin is created in the lamp post model, with
the outgoing spectrum containing many emission lines and ionization edges in
emission or absorption in the soft X-ray domain, as well as an iron line at
keV consisting of a blend of low ionization line from the deepest
layers and hydrogen and helium like resonance line from the upper layers, and
almost no absorption edge, contrary to the case of a slab of constant density.A
full heavy corona completely suppresses the highly ionized zone on the top of
the accretion disc and in such case the spectrum is featureless.Comment: 16 pages, 20 figures, corrected two sentences, accepted by MNRA
Obscuration model of Variability in AGN
There are strong suggestions that the disk-like accretion flow onto massive
black hole in AGN is disrupted in its innermost part (10-100 Rg), possibly due
to the radiation pressure instability. It may form a hot optically thin quasi
spherical (ADAF) flow surrounded by or containing denser clouds due to the
disruption of the disk. Such clouds might be optically thick, with a Thompson
depth of order of 10 or more. Within the frame of this cloud scenario
(Collin-Souffrin et al. 1996, Czerny & Dumont 1998), obscuration events are
expected and the effect would be seen as a variability. We consider expected
random variability due to statistical dispersion in location of clouds along
the line of sight for a constant covering factor. We discuss a simple
analytical toy model which provides us with the estimates of the mean spectral
properties and variability amplitude of AGN, and we support them with radiative
transfer computations done with the use of TITAN code of Dumont, Abrassart &
Collin (1999) and NOAR code of Abrassart (1999).Comment: to appear in Proc. of 5th Compton Symposium on Gamma-Ray Astronomy
and Astrophysic
On the size of the Fe II emitting region in the AGN Akn 120
We present a reverberation analysis of the strong, variable optical Fe II
emission bands in the spectrum of Akn 120, a low-redshift AGN which is one of
the best candidates for such a study. On time scales of several years the Fe II
line strengths follow the variations in the continuum strength. However, we are
unable to measure a clear reverberation lag time for these Fe II lines on any
time scale. This is due to the very broad and flat-topped nature of the Fe II
cross correlation functions, as compared to the H-beta response which is much
more sharply localized in time. Although there is some suggestion in the light
curve of a 300-day response time, our statistical analysis does not pick up
such a feature. We conclude that the optical Fe II emission does not come from
a photoionization-powered region similar in size to the H-beta emitting region,
but we cannot say for sure where it does come from. Our results are generally
consistent either with emission from a photoionized region several times larger
than the H-beta zone, or with emission from gas heated by some other means,
perhaps responding only indirectly to the continuum variations.Comment: Accepted for publication in the Ap
89Y NMR Probe of Zn Induced Local Magnetism in YBa2(Cu(1-y)Zn(y))3O(6+x)
We present detailed data and analysis of the effects of Zn substitution on
the planar Cu site in YBaCuO (YBCO) as evidenced from
our Y NMR measurements on oriented powders. For we find
additional NMR lines which are associated with the Zn substitution. From our
data on the intensities and temperature dependence of the shift, width, and
spin-lattice relaxation rate of these resonances, we conclude that the spinless
Zn 3 state induces local moments on the near-neighbour () Cu
atoms. Additionally, we conjecture that the local moments actually extend to
the farther Cu atoms with the magnetization alternating in sign at subsequent
sites. We show that this analysis is compatible with ESR data taken on
dilute Gd doped (on the Y site) and on neutron scattering data reported
recently on Zn substituted YBCO. For optimally doped compounds
Y resonances are not detected, but a large % -dependent
contribution to the Y NMR linewidth is evidenced and is also attributed
to the occurence of a weak induced local moment near the Zn. These results are
compatible with macroscopic magnetic measurements performed on YBCO
samples prepared specifically in order to minimize the content of impurity
phases. We find significant differences between the present results on the
underdoped YBCO samples and Al NMR data taken on Al
substituted on the Cu site in optimally doped LaCuO. Further
experimental work is needed to clarify the detailed evolution of the impurity
induced magnetism with hole content in the cuprates.Comment: To be published in EPJB 15 pages of text and figures in eps forma
A VLBA Search for a Stimulated Recombination Line from the Accretion Region in NGC1275
The radio source 3C84, in NGC1275, has a two sided structure on parsec
scales. The northern feature, presumed to be associated with a jet moving away
from the Earth, shows strong evidence for free-free absorption. The ionized gas
responsible for that absorption would be a source of detectable stimulated
recombination line emission for a wide range of physical conditions. The VLBA
has been used to search for the H65 hydrogen recombination line. The
line is only expected to be seen against the northern feature which contains a
small fraction of the total radio flux density. This spatial discrimination
significantly aids the search for a weak line. No line was seen, with upper
limits of roughly 15% of the continuum over a velocity range of 1486 km/s with
resolutions up to 6.6 km/s. In the absence of a strong radiation field, this
would imply that the free-free absorbing gas has a wide velocity width, is
moving rapidly relative to the systemic velocity, or is concentrated in a thin,
high density structure. All of these possibilities are reasonably likely close
to an AGN. However, in the intense radiation environment of the AGN, even
considering only the radiation we actually observe passing through the
free-free absorbing gas, the non-detection is probably assured by a combination
of saturation and radiation damping.Comment: 14 pages with 4 postscript figures. Accepted for publication in the
April 2003 Astronomical Journa
- …