31 research outputs found

    Quorum Sensing Signaling Molecules Produced by Reference and Emerging Soft-Rot Bacteria (Dickeya and Pectobacterium spp.)

    Get PDF
    International audienceBACKGROUND: Several small diffusible molecules are involved in bacterial quorum sensing and virulence. The production of autoinducers-1 and -2, quinolone, indole and γ-amino butyrate signaling molecules was investigated in a set of soft-rot bacteria belonging to six Dickeya or Pectobacterium species including recent or emerging potato isolates. METHODOLOGY/PRINCIPAL FINDINGS: Using bacterial biosensors, immunoassay, and chromatographic analysis, we showed that soft-rot bacteria have the common ability to produce transiently during their exponential phase of growth the N-3-oxo-hexanoyl- or the N-3-oxo-octanoyl-l-homoserine lactones and a molecule of the autoinducer-2 family. Dickeya spp. produced in addition the indole-3-acetic acid in tryptophan-rich conditions. All these signaling molecules have been identified for the first time in the novel Dickeya solani species. In contrast, quinolone and γ-amino butyrate signals were not identified and the corresponding synthases are not present in the available genomes of soft-rot bacteria. To determine if the variations of signal production according to growth phase could result from expression modifications of the corresponding synthase gene, the respective mRNA levels were estimated by reverse transcriptase-PCR. While the N-acyl-homoserine lactone production is systematically correlated to the synthase expression, that of the autoinducer-2 follows the expression of an enzyme upstream in the activated methyl cycle and providing its precursor, rather than the expression of its own synthase. CONCLUSIONS/SIGNIFICANCE: Despite sharing the S-adenosylmethionine precursor, no strong link was detected between the production kinetics or metabolic pathways of autoinducers-1 and -2. In contrast, the signaling pathway of autoinducer-2 seems to be switched off by the indole-3-acetic acid pathway under tryptophan control. It therefore appears that the two genera of soft-rot bacteria have similarities but also differences in the mechanisms of communication via the diffusible molecules. Our results designate autoinducer-1 lactones as the main targets for a global biocontrol of soft-rot bacteria communications, including those of emerging isolates

    How is agroforestry perceived in Europe? An assessment of positive and negative aspects by stakeholders

    Get PDF
    Whilst the benefits of agroforestry are widely recognised in tropical latitudes few studies have assessed how agroforestry is perceived in temperate latitudes. This study evaluates how stakeholders and key actors including farmers, landowners, agricultural advisors, researchers and environmentalists perceive the implementation and expansion of agroforestry in Europe. Meetings were held with 30 stakeholder groups covering different agroforestry systems in 2014 in eleven EU countries (Denmark, France, Germany, Greece, Hungary, Italy, Netherlands, Portugal, Spain, Sweden and the United Kingdom). In total 344 valid responses were received to a questionnaire where stakeholders were asked to rank the positive and negative aspects of implementing agroforestry in their region. Improved biodiversity and wildlife habitats, animal health and welfare, and landscape aesthetics were seen as the main positive aspects of agroforestry. By contrast, increased labour, complexity of work, management costs and administrative burden were seen as the most important negative aspects. Overall, improving the environmental value of agriculture was seen as the main benefit of agroforestry, whilst management and socio-economic issues were seen as the greatest barriers. The great variability in the opportunities and barriers of the systems suggests enhanced adoption of agroforestry across Europe will be most likely to occur with specific initiatives for each type of system

    A community effort in SARS-CoV-2 drug discovery.

    Get PDF
    peer reviewedThe COVID-19 pandemic continues to pose a substantial threat to human lives and is likely to do so for years to come. Despite the availability of vaccines, searching for efficient small-molecule drugs that are widely available, including in low- and middle-income countries, is an ongoing challenge. In this work, we report the results of an open science community effort, the "Billion molecules against Covid-19 challenge", to identify small-molecule inhibitors against SARS-CoV-2 or relevant human receptors. Participating teams used a wide variety of computational methods to screen a minimum of 1 billion virtual molecules against 6 protein targets. Overall, 31 teams participated, and they suggested a total of 639,024 molecules, which were subsequently ranked to find 'consensus compounds'. The organizing team coordinated with various contract research organizations (CROs) and collaborating institutions to synthesize and test 878 compounds for biological activity against proteases (Nsp5, Nsp3, TMPRSS2), nucleocapsid N, RdRP (only the Nsp12 domain), and (alpha) spike protein S. Overall, 27 compounds with weak inhibition/binding were experimentally identified by binding-, cleavage-, and/or viral suppression assays and are presented here. Open science approaches such as the one presented here contribute to the knowledge base of future drug discovery efforts in finding better SARS-CoV-2 treatments.R-AGR-3826 - COVID19-14715687-CovScreen (01/06/2020 - 31/01/2021) - GLAAB Enric

    Genome Sequence of the Emerging Plant Pathogen [i]Dickeya solani[/i] Strain RNS 08.23.3.1A

    Get PDF
    CABI:20143074594International audienceHere we present the genome sequence of Dickeya solani strain RNS 08.23.3.1A (PRI3337), isolated from Solanum tuberosum. Dickeya solani, recently described on potato cultures in Europe, is a proposed new taxon closely related to the Dickeya dianthicola and Dickeya dadantii species

    Biocontrol of Soft Rot: Confocal Microscopy Highlights Virulent Pectobacterial Communicationand Its Jamming by Rhodococcal Quorum-Quenching

    No full text
    International audienceConfocal laser-scanning microscopy was chosen to observe the colonization and damage caused by the soft rot Pectobacterium atrosepticum and the protection mediated by the biocontrol agent Rhodococcus erythropolis. We developed dual-color re- porter strains suited for monitoring quorum-sensing and quorum-quenching activities leading to maceration or bio- control, respectively. A constitutively expressed cyan or red fluorescent protein served as a cell tag for plant colonization, while an inducible expression reporter system based on the green fluorescent protein gene enabled the simultaneous re- cording of signaling molecule production, detection, or deg- radation. The dual-colored pathogen and biocontrol strains were used to coinoculate potato tubers. At cellular quorum, images revealed a strong pectobacterial quorum-sensing ac- tivity, especially at the plant cell walls, as well as a concomitant rhodococcal quorum-quenching response, at both the single- cell and microcolony levels. The generated biosensors appear to be promising and complementary tools useful for molecular and cellular studies of bacterial communication and interference

    Biocontrol of Soft Rot: Confocal Microscopy Highlights Virulent Pectobacterial Communicationand Its Jamming by Rhodococcal Quorum-Quenching

    No full text
    International audienceConfocal laser-scanning microscopy was chosen to observe the colonization and damage caused by the soft rot Pectobacterium atrosepticum and the protection mediated by the biocontrol agent Rhodococcus erythropolis. We developed dual-color re- porter strains suited for monitoring quorum-sensing and quorum-quenching activities leading to maceration or bio- control, respectively. A constitutively expressed cyan or red fluorescent protein served as a cell tag for plant colonization, while an inducible expression reporter system based on the green fluorescent protein gene enabled the simultaneous re- cording of signaling molecule production, detection, or deg- radation. The dual-colored pathogen and biocontrol strains were used to coinoculate potato tubers. At cellular quorum, images revealed a strong pectobacterial quorum-sensing ac- tivity, especially at the plant cell walls, as well as a concomitant rhodococcal quorum-quenching response, at both the single- cell and microcolony levels. The generated biosensors appear to be promising and complementary tools useful for molecular and cellular studies of bacterial communication and interference
    corecore