11 research outputs found

    Looking for a Map?

    Get PDF
    Bibliography and photographs of a display of government documents from Minnesota State University, Mankato.https://cornerstone.lib.mnsu.edu/lib-services-govdoc-display-maps/1000/thumbnail.jp

    Dental Caries and Enamelin Haplotype

    No full text
    International audienceIn the literature, the enamelin gene ENAM has been repeatedly designated as a possible candidate for caries susceptibility. Here, we checked whether ENAM variants could increase caries susceptibility. To this aim, we sequenced coding exons and exon-intron boundaries of ENAM in 250 children with a severe caries phenotype and in 149 caries-free patients from 9 French hospital groups. In total, 23 single-nucleotide polymorphisms (SNPs) were found, but none appeared to be responsible for a direct change of ENAM function. Six SNPs had a high minor allele frequency (MAF) and 6 others were identified for the first time. Statistical and evolutionary analyses showed that none of these SNPs was associated with caries susceptibility or caries protection when studied separately and challenged with environmental factors. However, haplotype interaction analysis showed that the presence, in a same variant, of 2 exonic SNPs (rs7671281 and rs3796704; MAF 0.12 and 0.10, respectively), both changing an amino acid in the protein region encoded by exon 10 (p.I648T and p.R763Q, respectively), increased caries susceptibility 2.66-fold independent of the environmental risk factors. These findings support ENAM as a gene candidate for caries susceptibility in the studied population

    Common SNPs of AmelogeninX (AMELX) and Dental Caries Susceptibility

    No full text
    International audienceGenetic approaches have shown that several genes could modify caries susceptibility; AmelogeninX (AMELX) has been repeatedly designated. Here, we hypothesized that AMELX mutations resulting in discrete changes of enamel microstructure may be found in children with a severe caries phenotype. In parallel, possible AMELX mutations that could explain resistance to caries may be found in caries-free patients. In this study, coding exons of AMELX and exon-intron boundaries were sequenced in 399 individuals with extensive caries (250) or caries-free (149) individuals from nine French hospital groups. No mutation responsible for a direct change of amelogenin function was identified. Seven single-nucleotide polymorphisms (SNPs) were found, 3 presenting a high allele frequency, and 1 being detected for the first time. Three SNPs were located in coding regions, 2 of them being non-synonymous. Both evolutionary and statistical analyses showed that none of these SNPs was associated with caries susceptibility, suggesting that AMELX is not a gene candidate in our studied population

    CD44 and ÎČ3 Integrin Organize Two Functionally Distinct Actin-based Domains in Osteoclasts

    No full text
    The actin cytoskeleton of mature osteoclasts (OCs) adhering to nonmineralized substrates is organized in a belt of podosomes reminiscent of the sealing zone (SZ) found in bone resorbing OCs. In this study, we demonstrate that the belt is composed of two functionally different actin-based domains: podosome cores linked with CD44, which are involved in cell adhesion, and a diffuse cloud associated with ÎČ3 integrin, which is involved in cell adhesion and contraction. Wiskott Aldrich Syndrome Protein (WASp) Interacting Protein (WIP)−/− OCs were devoid of podosomes, but they still exhibited actin clouds. Indeed, WIP−/− OCs show diminished expression of WASp, which is required for podosome formation. CD44 is a novel marker of OC podosome cores and the first nonintegrin receptor detected in these structures. The importance of CD44 is revealed by showing that its clustering restores podosome cores and WASp expression in WIP−/− OCs. However, although CD44 signals are sufficient to form a SZ, the presence of WIP is indispensable for the formation of a fully functional SZ

    Paxillin Phosphorylation Controls Invadopodia/Podosomes Spatiotemporal Organization

    Get PDF
    In Rous sarcoma virus (RSV)-transformed baby hamster kidney (BHK) cells, invadopodia can self-organize into rings and belts, similarly to podosome distribution during osteoclast differentiation. The composition of individual invadopodia is spatiotemporally regulated and depends on invadopodia localization along the ring section: the actin core assembly precedes the recruitment of surrounding integrins and integrin-linked proteins, whereas the loss of the actin core was a prerequisite to invadopodia disassembly. We have shown that invadopodia ring expansion is controlled by paxillin phosphorylations on tyrosine 31 and 118, which allows invadopodia disassembly. In BHK-RSV cells, ectopic expression of the paxillin mutant Y31F-Y118F induces a delay in invadopodia disassembly and impairs their self-organization. A similar mechanism is unraveled in osteoclasts by using paxillin knockdown. Lack of paxillin phosphorylation, calpain or extracellular signal-regulated kinase inhibition, resulted in similar phenotype, suggesting that these proteins belong to the same regulatory pathways. Indeed, we have shown that paxillin phosphorylation promotes Erk activation that in turn activates calpain. Finally, we observed that invadopodia/podosomes ring expansion is required for efficient extracellular matrix degradation both in BHK-RSV cells and primary osteoclasts, and for transmigration through a cell monolayer
    corecore