58 research outputs found

    Teashirt 1 (Tshz1) is essential for the development, survival and function of hypoglossal and phrenic motor neurons in mouse

    Get PDF
    Feeding and breathing are essential motor functions and rely on the activity of hypoglossal and phrenic motor neurons that innervate the tongue and diaphragm, respectively. Little is known about the genetic programs that control the development of these neuronal subtypes. The transcription factor Tshz1 is strongly and persistently expressed in developing hypoglossal and phrenic motor neurons. We used conditional mutation of Tshz1 in the progenitor zone of motor neurons (Tshz1(MNΔ)) to show that Tshz1 is essential for survival and function of hypoglossal and phrenic motor neurons. Hypoglossal and phrenic motor neurons are born in correct numbers, but many die between embryonic day 13.5 and 14.5 in Tshz1(MNΔ) mutant mice. In addition, innervation and electrophysiological properties of phrenic and hypoglossal motor neurons are altered. Severe feeding and breathing problems accompany this developmental deficit. Although motor neuron survival can be rescued by elimination of the pro-apoptotic factor Bax, innervation, feeding and breathing defects persist in Bax(-/-); Tshz1(MNΔ) mutants. We conclude that Tshz1 is an essential transcription factor for the development and physiological function of phrenic and hypoglossal motor neurons

    Inhibition of Hotspot Formation in Polymer Bonded Explosives Using an Interface Matching Low Density Polymer Coating at the Polymer–Explosive Interface

    Full text link
    In order to elucidate how shocks in heterogeneous materials affect decomposition and reactive processes, we used the ReaxFF reactive force field in reactive molecules dynamics (RMD) simulations of the effects of strong shocks (2.5 and 3.5 km/s) on a prototype polymer bonded explosive (PBX) consisting of cyclotrimethylene trinitramine (RDX) bonded to hydroxyl-terminated polybutadiene (HTPB). We showed earlier that shock propagation from the high density RDX to the low density polymer (RDX ? Poly) across a nonplanar periodic interface (sawtooth) leads to a hotspot at the initial asperity but no additional hotspot at the second asperity. This hotspot arises from shear along the interface induced by relaxation of the stress at the asperity. We now report the case for shock propagation from the low density polymer to the high density RDX (Poly ? RDX) where we find a hotspot at the initial asperity and a second more dramatic hotspot at the second asperity. This second hotspot is enhanced due to shock wave convergence from shock wave interaction with nonplanar interfaces. We consider that this second hotspot is likely the source of the detonation in realistic PBX systems. We showed how these hotspots depend on the density mismatch between the RDX and polymer and found that decreasing the density by a factor of 2 dramatically reduces the hotspot. These results suggest that to make PBX less sensitive for propellants and explosives, the binder should be designed to provide low density at the asperity in contact with the RDX. Based on these simulations, we propose a new design for an insensitive PBX in which a low density polymer coating is deposited between the RDX and the usual polymer binder. To test this idea, we simulated shock wave propagation from two opposite directions (RDX ? Poly and Poly ? RDX) through the interface matched PBX (IM-PBX) material containing a 3 nm coating of low density (0.48 g/cm3) polymer. These simulations showed that this IM-PBX design dramatically suppresses hotspot formation

    International AIDS Society global scientific strategy: towards an HIV cure 2016

    Get PDF
    Antiretroviral therapy is not curative. Given the challenges in providing lifelong therapy to a global population of more than 35 million people living with HIV, there is intense interest in developing a cure for HIV infection. The International AIDS Society convened a group of international experts to develop a scientific strategy for research towards an HIV cure. This Perspective summarizes the group's strategy

    Tissue-resident macrophages can be generated de novo in adult human skin from resident progenitor cells during substance P-mediated neurogenic inflammation ex vivo

    No full text
    Besides monocyte (MO)-derived macrophages (MACs), self-renewing tissue-resident macrophages (trMACs) maintain the intracutaneous MAC pool in murine skin. Here, we have asked whether the same phenomenon occurs in human skin using organ-cultured, full-thickness skin detached from blood circulation and bone marrow. Skin stimulation ex vivo with the neuropeptide substance P (SP), mimicking neurogenic skin inflammation, significantly increased the number of CD68+MACs in the papillary dermis without altering intracutaneous MAC proliferation or apoptosis. Since intraluminal CD14+MOs were undetectable in the non-perfused dermal vasculature, new MACs must have differentiated from resident intracutaneous progenitor cells in human skin. Interestingly, CD68+MACs were often seen in direct cell-cell-contact with cells expressing both, the hematopoietic stem cell marker CD34 and SP receptor (neurokinin-1 receptor [NK1R]). These cell-cell contacts and CD34+cell proliferation were up-regulated in SP-treated skin samples. Collectively, our study provides the first evidence that resident MAC progenitors, from which mature MACs can rapidly differentiate within the tissue, do exist in normal adult human skin. That these NK1R+trMAC-progenitor cells quickly respond to a key stress-associated neuroinflammatory stimulus suggests that this may satisfy increased local MAC demand under conditions of wounding/stress
    corecore