3,314 research outputs found
Modelling the influence of the process inputs on the removal of surface contaminants from Ti-6Al-4V linear friction welds
The linear friction welding (LFW) process is finding increasing interest from industry for the fabrication of near-net-shape, titanium alloy Ti–6Al–4V, aerospace components. Currently, the removal of surface contaminants, such as oxides and foreign particles, from the weld interface into the flash is not fully understood. To address this problem, two-dimensional (2D) computational models were developed using the finite element analysis (FEA) software DEFORM and validated with experiments. The key findings showed that the welds made with higher applied forces required less burn-off to completely remove the surface contaminants from the interface into the flash; the interface temperature increased as the applied force was decreased or the rubbing velocity increased; and the boundary temperature between the rapid flash formation and negligible material flow was approximately 970 °C. An understanding of these phenomena is of particular interest for the industrialisation of near-net-shape titanium alloy aerospace components.EPSRC, Boeing Company, Welding Institut
Kinetics of Surfactant Adsorption at Fluid/Fluid Interfaces: Non-ionic Surfactants
We present a model treating the kinetics of adsorption of soluble
surface-active molecules at the interface between an aqueous solution and
another fluid phase. The model accounts for both the diffusive transport inside
the solution and the kinetics taking place at the interface using a free-energy
formulation. In addition, it offers a general method of calculating dynamic
surface tensions. Non-ionic surfactants are shown, in general, to undergo a
diffusion-limited adsorption, in accord with experimental findings.Comment: 6 pages, 3 figures, see also cond-mat/960814
Modelling of the workpiece geometry effects on Ti–6Al–4V linear friction welds
Linear friction welding (LFW) is a solid-state joining process that is finding increasing interest from industry for the fabrication of titanium alloy (Ti–6Al–4V) preforms. Currently, the effects of the workpiece geometry on the thermal fields, material flow and interface contaminant removal during processing are not fully understood. To address this problem, two-dimensional (2D) computational models were developed using the finite element analysis (FEA) software DEFORM and validated with experiments. A key finding was that the width of the workpieces in the direction of oscillation (in-plane width) had a much greater effect on the experimental weld outputs than the cross-sectional area. According to the validated models, a decrease of the in-plane width increased the burn-off rate whilst decreasing the interface temperature, TMAZ thickness and the burn-off required to remove the interface contaminants from the weld into the flash. Furthermore, the experimental weld interface consisted of a Widmanstätten microstructure, which became finer as the in-plane width was reduced. These findings have significant, practical benefits and may aid industrialisation of the LFW process.The authors would like to thank the Engineering and Physical Sciences
Research Council (EPSRC), The Boeing Company and The Welding
Institute (TWI) for funding the research presented in this paper
Recommended from our members
Cas9 interrogates DNA in discrete steps modulated by mismatches and supercoiling.
The CRISPR-Cas9 nuclease has been widely repurposed as a molecular and cell biology tool for its ability to programmably target and cleave DNA. Cas9 recognizes its target site by unwinding the DNA double helix and hybridizing a 20-nucleotide section of its associated guide RNA to one DNA strand, forming an R-loop structure. A dynamic and mechanical description of R-loop formation is needed to understand the biophysics of target searching and develop rational approaches for mitigating off-target activity while accounting for the influence of torsional strain in the genome. Here we investigate the dynamics of Cas9 R-loop formation and collapse using rotor bead tracking (RBT), a single-molecule technique that can simultaneously monitor DNA unwinding with base-pair resolution and binding of fluorescently labeled macromolecules in real time. By measuring changes in torque upon unwinding of the double helix, we find that R-loop formation and collapse proceed via a transient discrete intermediate, consistent with DNA:RNA hybridization within an initial seed region. Using systematic measurements of target and off-target sequences under controlled mechanical perturbations, we characterize position-dependent effects of sequence mismatches and show how DNA supercoiling modulates the energy landscape of R-loop formation and dictates access to states competent for stable binding and cleavage. Consistent with this energy landscape model, in bulk experiments we observe promiscuous cleavage under physiological negative supercoiling. The detailed description of DNA interrogation presented here suggests strategies for improving the specificity and kinetics of Cas9 as a genome engineering tool and may inspire expanded applications that exploit sensitivity to DNA supercoiling
Coarse-graining diblock copolymer solutions: a macromolecular version of the Widom-Rowlinson model
We propose a systematic coarse-grained representation of block copolymers,
whereby each block is reduced to a single ``soft blob'' and effective intra- as
well as intermolecular interactions act between centres of mass of the blocks.
The coarse-graining approach is applied to simple athermal lattice models of
symmetric AB diblock copolymers, in particular to a Widom-Rowlinson-like model
where blocks of the same species behave as ideal polymers (i.e. freely
interpenetrate), while blocks of opposite species are mutually avoiding walks.
This incompatibility drives microphase separation for copolymer solutions in
the semi-dilute regime. An appropriate, consistent inversion procedure is used
to extract effective inter- and intramolecular potentials from Monte Carlo
results for the pair distribution functions of the block centres of mass in the
infinite dilution limit.Comment: To be published in mol.phys(2005
Energy and force analysis of Ti-6Al-4V linear friction welds for computational modeling input and validation data
The linear friction welding (LFW) process is finding increasing use as a manufacturing technology for the production of titanium alloy Ti-6Al-4V aerospace components. Computational models give an insight into the process, however, there is limited experimental data that can be used for either modeling inputs or validation. To address this problem, a design of experiments approach was used to investigate the influence of the LFW process inputs on various outputs for experimental Ti-6Al-4V welds. The finite element analysis software DEFORM was also used in conjunction with the experimental findings to investigate the heating of the workpieces. Key findings showed that the average interface force and coefficient of friction during each phase of the process were insensitive to the rubbing velocity; the coefficient of friction was not coulombic and varied between 0.3 and 1.3 depending on the process conditions; and the interface of the workpieces reached a temperature of approximately approximately 1273 K (1000 °C) at the end of phase 1. This work has enabled a greater insight into the underlying process physics and will aid future modeling investigations.EPSRC, Boeing Company, Welding Institut
- …