1,086 research outputs found
‘Our voice started off as a whisper and now it is a great big roar’ : The Salford Dementia Associate Panel as a model of involvement in research activities
This paper presents the work of the ‘Salford Dementia Associate Panel’, based at the Salford Institute for Dementia, Salford University (UK). We discuss the roles of the Dementia Associates, in particular around the areas of engagement and research. The panel is made up of people living with dementia, and current and former care partners. It highlights the development of this group over a four-year period and demonstrates over time how the role of a Dementia Associate member has evolved. The panel is involved in research, education and public engagement activities conducted by staff and students within the Institute. The motivations for becoming involved are clearly articulated and demonstrate how the personal backgrounds of individuals have driven the collective involvement and desire to bring about change. The benefits and challenges associated with working as part of a panel are discussed. We conclude by bringing together our experiences as a set of suggestions for others who may wish to create a similar forum to promote the involvement of people living with dementia and former and current care partners
Protease-activated receptor 2 : are common functions in glial and immune cells linked to inflammation-related CNS disorders?
Protease-activated receptors (PARs) are a novel family of G-protein coupled receptors (GPCRs) whose activation requires the cleavage of the N-terminus by a serine protease. However recent evidence reveals that alternative routes of activation also occur and that PARs signal via multiple pathways and that pathway activation is activator-dependent. Given our increased understanding of PAR function both under physiological and pathophysiological conditions; one aspect that has remained a constant is the link between PAR2 and inflammation. PAR2 is expressed in immune cells of both the innate and adaptive immune system and has been shown to play a role in several peripheral inflammatory conditions. PAR2 is similarly expressed on astrocytes and microglia within the CNS and its activation is either protective or detrimental to CNS function depending on the conditions or disease state investigated. With a clear similarity between the function of PAR2 on both immune cells and CNS glial cells, here we have reviewed their roles in both these systems. We suggest that the recent development of novel PAR2 modulators, including those that show biased signalling, will further increase our understanding of PAR2 function and the development of potential therapeutics for CNS disorders in which inflammation is proposed to play a role
A 340/380 nm light emitting diode illuminator for Fura-2 AM ratiometric Ca2+ imaging of live cells with better than 5 nM precision
We report the first demonstration of a fast wavelength-switchable 340/380 nm light emitting diode (LED) illuminator for Fura-2 ratiometric Ca2+ imaging of live cells. The LEDs closely match the excitation peaks of bound and free Fura-2 and enables the precise detection of cytosolic Ca2+ concentrations, which is only limited by the Ca2+ response of Fura-2. Using this illuminator, we have shown that Fura-2 acetoxymethyl ester (AM) concentrations as low as 250 nM can be used to detect induced Ca2+ events in tsA-201 cells and while utilizing the 150 µs switching speeds available, it was possible to image spontaneous Ca2+ transients in hippocampal neurons at a rate of 24.39 Hz that were blunted or absent at typical 0.5 Hz acquisition rates. Overall, the sensitivity and acquisition speeds available using this LED illuminator significantly improves the temporal resolution that can be obtained in comparison to current systems and supports optical imaging of fast Ca2+ events using Fura-2
Asymptotic behaviour of random tridiagonal Markov chains in biological applications
Discrete-time discrete-state random Markov chains with a tridiagonal
generator are shown to have a random attractor consisting of singleton subsets,
essentially a random path, in the simplex of probability vectors. The proof
uses the Hilbert projection metric and the fact that the linear cocycle
generated by the Markov chain is a uniformly contractive mapping of the
positive cone into itself. The proof does not involve probabilistic properties
of the sample path and is thus equally valid in the nonautonomous deterministic
context of Markov chains with, say, periodically varying transitions
probabilities, in which case the attractor is a periodic path.Comment: 13 pages, 22 bibliography references, submitted to DCDS-B, added
references and minor correction
Compartmentalisation and localisation of the translation initiation factor (eIF) 4F complex in normally growing fibroblasts
Previous observations of association of mRNAs and ribosomes with subcellular structures highlight the importance of localised translation. However, little is known regarding associations between eukaryotic translation initiation factors and cellular structures within the cytoplasm of normally growing cells. We have used detergent-based cellular fractionation coupled with immunofluorescence microscopy to investigate the subcellular localisation in NIH3T3 fibroblasts of the initiation factors involved in recruitment of mRNA for translation, focussing on eIF4E, the mRNA cap-binding protein, the scaffold protein eIF4GI and poly(A) binding protein (PABP). We find that these proteins exist mainly in a soluble cytosolic pool, with only a subfraction tightly associated with cellular structures. However, this "associated" fraction was enriched in active "eIF4F" complexes (eIF4E.eIF4G.eIF4A.PABP). Immunofluorescence analysis reveals both a diffuse and a perinuclear distribution of eIF4G, with the perinuclear staining pattern similar to that of the endoplasmic reticulum. eIF4E also shows both a diffuse staining pattern and a tighter perinuclear stain, partly coincident with vimentin intermediate filaments. All three proteins localise to the lamellipodia of migrating cells in close proximity to ribosomes, microtubules, microfilaments and focal adhesions, with eIF4G and eIF4E at the periphery showing a similar staining pattern to the focal adhesion protein vinculin
Mitogen-activated protein kinase phosphatase-2 deletion impairs synaptic plasticity and hippocampal-dependent memory
Mitogen-activated protein kinases (MAPKs) regulate brain function and their dysfunction is implicated in a number of brain disorders, including Alzheimer’s disease. Thus there is great interest in understanding the signalling systems that control MAPK function. One family of proteins that contribute to this process, the mitogen-activated protein kinase phosphatases (MKPs), directly inactivate MAPKs through dephosphorylation. Recent studies have identified novel functions of MKPs in development, the immune system and cancer. However, a significant gap in our knowledge remains in relation to their role in brain functioning. Here, using transgenic mice where the Dusp4 gene encoding MKP-2 has been knocked out (MKP-2-/- mice), we show that long-term potentiation (LTP) is impaired in MKP-2-/- mice compared to MKP-2+/+ controls whereas neuronal excitability, evoked synaptic transmission and paired-pulse facilitation remain unaltered. Furthermore, spontaneous excitatory postsynaptic currents (sEPSC) frequency was increased in acute slices and primary hippocampal cultures prepared from MKP-2-/- mice with no effect on EPSC amplitude observed. An increase in synapse number was evident in primary hippocampal cultures which may account for the increase in spontaneous EPSC frequency. In addition no change in ERK activity was detected in both brain tissue and primary hippocampal cultures, suggesting that the effects of MKP-2 deletion were MAPK independent. Consistent with these alterations in hippocampal function, MKP-2-/- mice show deficits in spatial reference and working memory when investigated using the Morris water maze. These data show that MKP-2 plays a role in regulating hippocampal function and that this effect may be independent of MAPK signalling
Interaction of eukaryotic translation initiation factor 4G with the nuclear cap-binding complex provides a link between nuclear and cytoplasmic functions of the m7 guanosine cap
In eukaryotes the majority of mRNAs have an m7G cap that is added cotranscriptionally and that plays an important role in many aspects of mRNA metabolism. The nuclear cap-binding complex (CBC; consisting of CBP20 and CBP80) mediates the stimulatory functions of the cap in pre-mRNA splicing, 3' end formation, and U snRNA export. As little is known about how nuclear CBC mediates the effects of the cap in higher eukaryotes, we have characterized proteins that interact with CBC in HeLa cell nuclear extracts as potential mediators of its function. Using cross-linking and coimmunoprecipitation, we show that eukaryotic translation initiation factor 4G (eIF4G), in addition to its function in the cytoplasm, is a nuclear CBC-interacting protein. We demonstrate that eIF4G interacts with CBC in vitro and that, in addition to its cytoplasmic localization, there is a significant nuclear pool of eIF4G in mammalian cells in vivo. Immunoprecipitation experiments suggest that, in contrast to the cytoplasmic pool, much of the nuclear eIF4G is not associated with eIF4E (translation cap binding protein of eIF4F) but is associated with CBC. While eIF4G stably associates with spliceosomes in vitro and shows close association with spliceosomal snRNPs and splicing factors in vivo, depletion studies show that it does not participate directly in the splicing reaction. Taken together the data indicate that nuclear eIF4G may be recruited to pre-mRNAs via its interaction with CBC and accompanies the mRNA to the cytoplasm, facilitating the switching of CBC for eIF4F. This may provide a mechanism to couple nuclear and cytoplasmic functions of the mRNA cap structure
The Charter Dialogue between Courts and Legislatures (Or Perhaps the Charter of Rights Isn\u27t Such a Bad Thing after All)
This article responds to the argument that judicial review of legislation under the Canadian Charter of Rights and Freedoms is illegitimate because it is undemocratic. The authors show that Charter cases nearly always can be, and often are, followed by new legislation that still accomplishes the same objectives as the legislation that was struck down. The effect of the Charter is rarely to block a legislative objective, but rather to influence the design of implementing legislation. Charter cases cause a public debate in which Charter-protected rights have a more prominent role than they would have if there had been no judicial decision. The process is best regarded as a dialogue between courts and legislatures
Shaping of a three-dimensional carnivorous trap through modulation of a planar growth mechanism
Leaves display a remarkable range of forms, from flat sheets with simple outlines to cup-shaped traps. Although much progress has been made in understanding the mechanisms of planar leaf development, it is unclear whether similar or distinctive mechanisms underlie shape transformations during development of more complex curved forms. Here, we use 3D imaging and cellular and clonal analysis, combined with computational modelling, to analyse the development of cup-shaped traps of the carnivorous plant Utricularia gibba. We show that the transformation from a near-spherical form at early developmental stages to an oblate spheroid with a straightened ventral midline in the mature form can be accounted for by spatial variations in rates and orientations of growth. Different hypotheses regarding spatiotemporal control predict distinct patterns of cell shape and size, which were tested experimentally by quantifying cellular and clonal anisotropy. We propose that orientations of growth are specified by a proximodistal polarity field, similar to that hypothesised to account for Arabidopsis leaf development, except that in Utricularia, the field propagates through a highly curved tissue sheet. Independent evidence for the polarity field is provided by the orientation of glandular hairs on the inner surface of the trap. Taken together, our results show that morphogenesis of complex 3D leaf shapes can be accounted for by similar mechanisms to those for planar leaves, suggesting that simple modulations of a common growth framework underlie the shaping of a diverse range of morphologies
- …
