51 research outputs found
Role of the Linker Domain and the 203–214 N-Terminal Residues in the Human Topoisomerase I DNA Complex Dynamics
The influence of the N-terminal residues 203–214 and the linker domain on motions in the human topoisomerase I-DNA complex has been investigated by comparing the molecular dynamics simulations of the system with (topo70) or without (topo58/6.3) these regions. Topo58/6.3 is found to fluctuate more than topo70, indicating that the presence of the N-terminal residues and the linker domain dampen the core and C-terminal fluctuations. The simulations also show that residues 203–207 and the linker domain participate in a network of correlated movements with key regions of the enzyme, involved in the human topoisomerase I catalytic cycle, providing a structural-dynamical explanation for the better DNA relaxation activity of topo70 when compared to topo58/6.3. The data have been examined in relation to a wealth of biochemical, site-directed mutagenesis and crystallographic data on human topoisomerase I. The simulations finally show the occurrence of a network of direct and water mediated hydrogen bonds in the proximity of the active site, and the presence of a water molecule in the appropriate position to accept a proton from the catalytic Tyr-723 residue, suggesting that water molecules have an important role in the stabilization and function of this enzyme
The genotypic false positive rate determined by V3 population sequencing can predict the burden of HIV-1 CXCR4-using species detected by pyrosequencing
The false-positive rate (FPR) is a percentage-score provided by Geno2Pheno-algorithm indicating the likelihood that a V3-sequence is falsely predicted as CXCR4-using. We evaluated the correlation between FPR obtained by V3 population-sequencing and the burden of CXCR4-using variants detected by V3 ultra-deep sequencing (UDPS) and Enhanced-Sensitivity Trofile assay (ESTA)
A new bioavailable fenretinide formulation with antiproliferative, antimetabolic, and cytotoxic effects on solid tumors
Fenretinide is a synthetic retinoid characterized by anticancer activity in preclinical models and favorable toxicological profile, but also by a low bioavailability that hindered its clinical efficacy in former clinical trials. We developed a new formulation of fenretinide complexed with 2-hydroxypropyl-beta-cyclodextrin (nanofenretinide) characterized by an increased bioavailability and therapeutic efficacy. Nanofenretinide was active in cell lines derived from multiple solid tumors, in primary spheroid cultures and in xenografts of lung and colorectal cancer, where it inhibited tumor growth independently from the mutational status of tumor cells. A global profiling of pathways activated by nanofenretinide was performed by reverse-phase proteomic arrays and lipid analysis, revealing widespread repression of the mTOR pathway, activation of apoptotic, autophagic and DNA damage signals and massive production of dihydroceramide, a bioactive lipid with pleiotropic effects on several biological processes. In cells that survived nanofenretinide treatment there was a decrease of factors involved in cell cycle progression and an increase in the levels of p16 and phosphorylated p38 MAPK with consequent block in G0 and early G1. The capacity of nanofenretinide to induce cancer cell death and quiescence, together with its elevated bioavailability and broad antitumor activity indicate its potential use in cancer treatment and chemoprevention
A Specific Mutational Signature Associated with DNA 8-Oxoguanine Persistence in MUTYH-defective Colorectal Cancer.
8-Oxoguanine, a common mutagenic DNA lesion, generates G:C>T:A transversions via mispairing with adenine during DNA replication. When operating normally, the MUTYH DNA glycosylase prevents 8-oxoguanine-related mutagenesis by excising the incorporated adenine. Biallelic MUTYH mutations impair this enzymatic function and are associated with colorectal cancer (CRC) in MUTYH-Associated Polyposis (MAP) syndrome. Here, we perform whole-exome sequencing that reveals a modest mutator phenotype in MAP CRCs compared to sporadic CRC stem cell lines or bulk tumours. The excess G:C>T:A transversion mutations in MAP CRCs exhibits a novel mutational signature, termed Signature 36, with a strong sequence dependence. The MUTYH mutational signature reflecting persistent 8-oxoG:A mismatches occurs frequently in the APC, KRAS, PIK3CA, FAT4, TP53, FAT1, AMER1, KDM6A, SMAD4 and SMAD2 genes that are associated with CRC. The occurrence of Signature 36 in other types of human cancer indicates that DNA 8-oxoguanine-related mutations might contribute to the development of cancer in other organs
Sentinel mutations in standard population sequencing can predict the presence of HIV-1 reverse transcriptase major mutations detectable only by ultra-deep pyrosequencing
Objectives: This proof-of-concept study aimed to identify whether mutations considered not yet relevant for drug resistance (but located at key drug-resistance positions) can act as 'sentinels' of minority resistant variants in HIV-1 drug-naive patients.
Methods: We focused our attention on three reverse transcriptase (RT) mutations (T69S, L210M and K103R) easily detected by standard population sequencing [i.e. the genotypic resistance test (GRT)]. Ultra-deep pyrosequencing (UDPS) of HIV-1 RT was performed using GS-FLX Roche, on plasma RNA from 40 drug-naive patients infected with HIV-1 subtype B without primary resistance detected by GRT. Only RT drug resistance mutations detected at >0.1% in both forward and reverse directions were considered. Associations between GRT sentinel mutations and UDPS drug resistance were assessed using Fisher's exact test.
Results: UDPS detected drug resistance mutations in 18/40 drug-naive patients. Patients carrying HIV-1 strains with T69S and L210M by GRT showed a trend to greater infection by minority drug-resistant variants than control patients infected by HIV-1 without these mutations (5/10 and 7/10 versus 3/10; P not significant). No association was found for K103R by GRT. Notably, T69S and L210M(but not K103R or control viruses) were associated with GRT minority drug resistant variants with a prevalence >1% (3/10 and 4/10 versus 0/20 in K103R and controls; P=0.03 and P=0.008, respectively). Moreover, the presence of L210M or T69S viruses by GRT significantly correlated with that of minority thymidine analogue mutations by UDPS (6/20 patients carrying HIV-1 strains with T69S/L210M versus 0/20 patients carrying HIV-1 having K103R or none of these mutations; P=0.03).
Conclusions: This proof-of-concept study suggests the existence of genetic markers, detectable by routine testing, potentially acting as sentinel mutations of minority drug resistance. Their identification may help in the selection of patients at high risk of resistance in reservoirs without the necessity of using UDPS
Development of a Low Bias Method for Characterizing Viral Populations Using Next Generation Sequencing Technology
Background: With an estimated 38 million people worldwide currently infected with human immunodeficiency virus (HIV), and an additional 4.1 million people becoming infected each year, it is important to understand how this virus mutates and develops resistance in order to design successful therapies.
Methodology/Principal Findings: We report a novel experimental method for amplifying full-length HIV genomes without the use of sequence-specific primers for high throughput DNA sequencing, followed by assembly of full length viral genome sequences from the resulting large dataset. Illumina was chosen for sequencing due to its ability to provide greater coverage of the HIV genome compared to prior methods, allowing for more comprehensive characterization of the heterogeneity present in the HIV samples analyzed. Our novel amplification method in combination with Illumina sequencing was used to analyze two HIV populations: a homogenous HIV population based on the canonical NL4-3 strain and a heterogeneous viral population obtained from a HIV patient's infected T cells. In addition, the resulting sequence was analyzed using a new computational approach to obtain a consensus sequence and several metrics of diversity.
Significance: This study demonstrates how a lower bias amplification method in combination with next generation DNA sequencing provides in-depth, complete coverage of the HIV genome, enabling a stronger characterization of the quasispecies present in a clinically relevant HIV population as well as future study of how HIV mutates in response to a selective pressure
De Novo VPS4A Mutations Cause Multisystem Disease with Abnormal Neurodevelopment.
The endosomal sorting complexes required for transport (ESCRTs) are essential for multiple membrane modeling and membrane-independent cellular processes. Here we describe six unrelated individuals with de novo missense variants affecting the ATPase domain of VPS4A, a critical enzyme regulating ESCRT function. Probands had structural brain abnormalities, severe neurodevelopmental delay, cataracts, growth impairment, and anemia. In cultured cells, overexpression of VPS4A mutants caused enlarged endosomal vacuoles resembling those induced by expression of known dominant-negative ATPase-defective forms of VPS4A. Proband-derived fibroblasts had enlarged endosomal structures with abnormal accumulation of the ESCRT protein IST1 on the limiting membrane. VPS4A function was also required for normal endosomal morphology and IST1 localization in iPSC-derived human neurons. Mutations affected other ESCRT-dependent cellular processes, including regulation of centrosome number, primary cilium morphology, nuclear membrane morphology, chromosome segregation, mitotic spindle formation, and cell cycle progression. We thus characterize a distinct multisystem disorder caused by mutations affecting VPS4A and demonstrate that its normal function is required for multiple human developmental and cellular processes.This work was supported by: UK Medical Research Council Project Grants [MR/M00046X/1], [MR/R026440/1] and Project grant from National Institute of Health Research Biomedical Research Centre at Addenbrooke's Hospital (to E.R.), Fondazione Bambino Gesù (Vite Coraggiose) and Italian Ministry of Health (CCR-2017-23669081) (to M.T.), National Institute for Health Research (NIHR) for the Cambridge Biomedical Research Centre and NIHR BioResource (Grant Number RG65966) (to F.L.R.), and a Sir Henry Dale Fellowship jointly funded by the Wellcome Trust and the Royal Society (Grant Number 216370/Z/19/Z) (to J.E.). CIMR was supported by a Wellcome Trust Strategic Award [100140] and Equipment Grant [093026].
This research was made possible through access to the data and findings generated by the 100,000 Genomes Project. The 100,000 Genomes Project is managed by Genomics England Limited (a wholly owned company of the Department of Health and Social Care). The 100,000 Genomes Project is funded by the National Institute for Health Research and NHS England. The Wellcome Trust, Cancer Research UK and the Medical Research Council have also funded research infrastructure. The 100,000 Genomes Project uses data provided by patients and collected by the National Health Service as part of their care and support
The Evolutionary Analysis of Emerging Low Frequency HIV-1 CXCR4 Using Variants through Time—An Ultra-Deep Approach
Large-scale parallel pyrosequencing produces unprecedented quantities of sequence data. However, when generated from viral populations current mapping software is inadequate for dealing with the high levels of variation present, resulting in the potential for biased data loss. In order to apply the 454 Life Sciences' pyrosequencing system to the study of viral populations, we have developed software for the processing of highly variable sequence data. Here we demonstrate our software by analyzing two temporally sampled HIV-1 intra-patient datasets from a clinical study of maraviroc. This drug binds the CCR5 coreceptor, thus preventing HIV-1 infection of the cell. The objective is to determine viral tropism (CCR5 versus CXCR4 usage) and track the evolution of minority CXCR4-using variants that may limit the response to a maraviroc-containing treatment regimen. Five time points (two prior to treatment) were available from each patient. We first quantify the effects of divergence on initial read k-mer mapping and demonstrate the importance of utilizing population-specific template sequences in relation to the analysis of next-generation sequence data. Then, in conjunction with coreceptor prediction algorithms that infer HIV tropism, our software was used to quantify the viral population structure pre- and post-treatment. In both cases, low frequency CXCR4-using variants (2.5–15%) were detected prior to treatment. Following phylogenetic inference, these variants were observed to exist as distinct lineages that were maintained through time. Our analysis, thus confirms the role of pre-existing CXCR4-using virus in the emergence of maraviroc-insensitive HIV. The software will have utility for the study of intra-host viral diversity and evolution of other fast evolving viruses, and is available from http://www.bioinf.manchester.ac.uk/segminator/
BF Integrase Genes of HIV-1 Circulating in São Paulo, Brazil, with a Recurrent Recombination Region
Although some studies have shown diversity in HIV integrase (IN) genes, none has focused particularly on the gene evolving in epidemics in the context of recombination. The IN gene in 157 HIV-1 integrase inhibitor-naïve patients from the São Paulo State, Brazil, were sequenced tallying 128 of subtype B (23 of which were found in non-B genomes), 17 of subtype F (8 of which were found in recombinant genomes), 11 integrases were BF recombinants, and 1 from subtype C. Crucially, we found that 4 BF recombinant viruses shared a recurrent recombination breakpoint region between positions 4900 and 4924 (relative to the HXB2) that includes 2 gRNA loops, where the RT may stutter. Since these recombinants had independent phylogenetic origin, we argue that these results suggest a possible recombination hotspot not observed so far in BF CRF in particular, or in any other HIV-1 CRF in general. Additionally, 40% of the drug-naïve and 45% of the drug-treated patients had at least 1 raltegravir (RAL) or elvitegravir (EVG) resistance-associated amino acid change, but no major resistance mutations were found, in line with other studies. Importantly, V151I was the most common minor resistance mutation among B, F, and BF IN genes. Most codon sites of the IN genes had higher rates of synonymous substitutions (dS) indicative of a strong negative selection. Nevertheless, several codon sites mainly in the subtype B were found under positive selection. Consequently, we observed a higher genetic diversity in the B portions of the mosaics, possibly due to the more recent introduction of subtype F on top of an ongoing subtype B epidemics and a fast spread of subtype F alleles among the B population
- …