685 research outputs found

    Band gaps in pseudopotential self-consistent GW calculations

    Full text link
    For materials which are incorrectly predicted by density functional theory to be metallic, an iterative procedure must be adopted in order to perform GW calculations. In this paper we test two iterative schemes based on the quasi-particle and pseudopotential approximations for a number of inorganic semiconductors whose electronic structures are well known from experiment. Iterating just the quasi-particle energies yields a systematic, but modest overestimate of the band gaps, confirming conclusions drawn earlier for CaB_6 and YH_3. Iterating the quasi-particle wave functions as well gives rise to an imbalance between the Hartree and Fock potentials and results in bandgaps in far poorer agreement with experiment.Comment: 5 pages, 2 figures, 2 table

    Ab initio study on the effects of transition metal doping of Mg2NiH4

    Get PDF
    Mg2NiH4 is a promising hydrogen storage material with fast (de)hydrogenation kinetics. Its hydrogen desorption enthalpy, however, is too large for practical applications. In this paper we study the effects of transition metal doping by first-principles density functional theory calculations. We show that the hydrogen desorption enthalpy can be reduced by ~0.1 eV/H2 if one in eight Ni atoms is replaced by Cu or Fe. Replacing Ni by Co atoms, however, increases the hydrogen desorption enthalpy. We study the thermodynamic stability of the dopants in the hydrogenated and dehydrogenated phases. Doping with Co or Cu leads to marginally stable compounds, whereas doping with Fe leads to an unstable compound. The optical response of Mg2NiH4 is also substantially affected by doping. The optical gap in Mg2NiH4 is ~1.7 eV. Doping with Co, Fe or Cu leads to impurity bands that reduce the optical gap by up to 0.5 eV.Comment: 8 pages, 4 figure

    First-principles calculations of the crystal structure, electronic structure, and thermodynamic stability of Be(BH4)2

    Get PDF
    Alanates and boranates are intensively studied because of their potential use as hydrogen storage materials. In this paper, we present a first-principles study of the electronic structure and the energetics of beryllium boranate BeBH42. From total energy calculations, we show that—in contrast to the other boranates and alanates—hydrogen desorption directly to the elements is likely and is at least competitive with desorption to the elemental hydride BeH2. The formation enthalpy of BeBH42 is only −0.14 eV/H2 at T=0 K. This low value can be rationalized by the participation of all atoms in the covalent bonding, which is in contrast to the ionic bonding observed in other boranates. From calculations of thermodynamic properties at finite temperature, we estimate a decomposition temperature of 162 K at a pressure of 1 bar

    Tunable Hydrogen Storage in Magnesium - Transition Metal Compounds

    Get PDF
    Magnesium dihydride (\mgh) stores 7.7 weight % hydrogen, but it suffers from a high thermodynamic stability and slow (de)hydrogenation kinetics. Alloying Mg with lightweight transition metals (TM = Sc, Ti, V, Cr) aims at improving the thermodynamic and kinetic properties. We study the structure and stability of Mgx_xTM1−x_{1-x}H2_2 compounds, x=[0x=[0-1], by first-principles calculations at the level of density functional theory. We find that the experimentally observed sharp decrease in hydrogenation rates for x≳0.8x\gtrsim0.8 correlates with a phase transition of Mgx_xTM1−x_{1-x}H2_2 from a fluorite to a rutile phase. The stability of these compounds decreases along the series Sc, Ti, V, Cr. Varying the transition metal (TM) and the composition xx, the formation enthalpy of Mgx_xTM1−x_{1-x}H2_2 can be tuned over the substantial range 0-2 eV/f.u. Assuming however that the alloy Mgx_xTM1−x_{1-x} does not decompose upon dehydrogenation, the enthalpy associated with reversible hydrogenation of compounds with a high magnesium content (x=0.75x=0.75) is close to that of pure Mg.Comment: 8 pages, 5 figure

    Substrate-induced bandgap in graphene on hexagonal boron nitride

    Get PDF
    We determine the electronic structure of a graphene sheet on top of a lattice-matched hexagonal boron nitride (h-BN) substrate using ab initio density functional calculations. The most stable configuration has one carbon atom on top of a boron atom, the other centered above a BN ring. The resulting inequivalence of the two carbon sites leads to the opening of a gap of 53 meV at the Dirac points of graphene and to finite masses for the Dirac fermions. Alternative orientations of the graphene sheet on the BN substrate generate similar band gaps and masses. The band gap induced by the BN surface can greatly improve room temperature pinch-off characteristics of graphene-based field effect transistors.Comment: 5 pages, 4 figures, Phys. Rev. B, in pres

    First-principles study of the interaction and charge transfer between graphene and metals

    Get PDF
    Measuring the transport of electrons through a graphene sheet necessarily involves contacting it with metal electrodes. We study the adsorption of graphene on metal substrates using first-principles calculations at the level of density functional theory. The bonding of graphene to Al, Ag, Cu, Au and Pt(111) surfaces is so weak that its unique "ultrarelativistic" electronic structure is preserved. The interaction does, however, lead to a charge transfer that shifts the Fermi level by up to 0.5 eV with respect to the conical points. The crossover from p-type to n-type doping occurs for a metal with a work function ~5.4 eV, a value much larger than the work function of free-standing graphene, 4.5 eV. We develop a simple analytical model that describes the Fermi level shift in graphene in terms of the metal substrate work function. Graphene interacts with and binds more strongly to Co, Ni, Pd and Ti. This chemisorption involves hybridization between graphene pzp_z-states and metal d-states that opens a band gap in graphene. The graphene work function is as a result reduced considerably. In a current-in-plane device geometry this should lead to n-type doping of graphene.Comment: 12 pages, 9 figure

    Theoretical prediction of perfect spin filtering at interfaces between close-packed surfaces of Ni or Co and graphite or graphene

    Get PDF
    The in-plane lattice constants of close-packed planes of fcc and hcp Ni and Co match that of graphite almost perfectly so that they share a common two dimensional reciprocal space. Their electronic structures are such that they overlap in this reciprocal space for one spin direction only allowing us to predict perfect spin filtering for interfaces between graphite and (111) fcc or (0001) hcp Ni or Co. First-principles calculations of the scattering matrix show that the spin filtering is quite insensitive to amounts of interface roughness and disorder which drastically influence the spin-filtering properties of conventional magnetic tunnel junctions or interfaces between transition metals and semiconductors. When a single graphene sheet is adsorbed on these open dd-shell transition metal surfaces, its characteristic electronic structure, with topological singularities at the K points in the two dimensional Brillouin zone, is destroyed by the chemical bonding. Because graphene bonds only weakly to Cu which has no states at the Fermi energy at the K point for either spin, the electronic structure of graphene can be restored by dusting Ni or Co with one or a few monolayers of Cu while still preserving the ideal spin injection property.Comment: 12 pages, 11 figure

    Monolayer Nitrides Doped with Transition Metals as Efficient Catalysts for Water Oxidation: The Singular Role of Nickel

    Get PDF
    Exploration of precious-metal-free catalysts for water splitting is of great importance in developing renewable energy conversion and storage technologies. In this paper, on the basis of density functional theory calculations, we reveal the link between the oxygen evolution reaction (OER) activities and the electronic properties of pure and first-row transition-metal (TM)-doped AlN and GaN two-dimensional monolayers. We find that Ni-doped layers are singularly appealing because they lead to a low overpotential (0.4 V). Early TM dopants are not suited for the OER because they bind the intermediate species OH or O too strongly, which leads to very large overpotentials, or no OER activity at all. The late TM dopants Cu and Zn show less or no OER activity as they bind the intermediate species too weakly. Although in many cases the overpotential can be traced back to an OOH intermediate species being adsorbed too weakly compared to an OH species, the Ni dopant breaks this rule by stabilizing the OOH adsorbant. The stabilization can be correlated with a switch from a high-spin to a low-spin state of the dopant atom. This ability to change spin states offers an exciting ingredient for the design of OER catalysts.</p

    Robert B. Vance v. Paul V. Fordham : Appellant\u27s Reply Brief

    Get PDF
    Appeal from the Judgment of the Third Judicial District Court for Salt Lake County. Honorable Christine M. Durham, Judge affirming the order of the Department of Registration
    • …
    corecore