376 research outputs found

    Identification of Berezin-Toeplitz deformation quantization

    Full text link
    We give a complete identification of the deformation quantization which was obtained from the Berezin-Toeplitz quantization on an arbitrary compact Kaehler manifold. The deformation quantization with the opposite star-product proves to be a differential deformation quantization with separation of variables whose classifying form is explicitly calculated. Its characteristic class (which classifies star-products up to equivalence) is obtained. The proof is based on the microlocal description of the Szegoe kernel of a strictly pseudoconvex domain given by Boutet de Monvel and Sjoestrand.Comment: 26 page

    Morita Equivalence, Picard Groupoids and Noncommutative Field Theories

    Full text link
    In this article we review recent developments on Morita equivalence of star products and their Picard groups. We point out the relations between noncommutative field theories and deformed vector bundles which give the Morita equivalence bimodules.Comment: Latex2e, 10 pages. Conference Proceeding for the Sendai Meeting 2002. Some typos fixe

    A cueing technique in choice reaction tlme

    Get PDF
    Much of the fluctuation in choice RT data is assumed to arise from variations in perceptual and response biases correlated with sequential patterns of trial events. Inserting a predictive cue prior to the stimulus on each trial apparently induces a strong bias not only toward that particular stimulus, but also toward its modality and toward the associated response. Trial-to-trial sequential effects under cued conditions were markedly smaller than those obtained in a noncued control condition. © 1970 Psychonomic Society, Inc

    Interaction of perceptual grouping and crossmodal temporal capture in tactile apparent-motion

    Get PDF
    Previous studies have shown that in tasks requiring participants to report the direction of apparent motion, task-irrelevant mono-beeps can "capture'' visual motion perception when the beeps occur temporally close to the visual stimuli. However, the contributions of the relative timing of multimodal events and the event structure, modulating uni- and/or crossmodal perceptual grouping, remain unclear. To examine this question and extend the investigation to the tactile modality, the current experiments presented tactile two-tap apparent-motion streams, with an SOA of 400 ms between successive, left-/right-hand middle-finger taps, accompanied by task-irrelevant, non-spatial auditory stimuli. The streams were shown for 90 seconds, and participants' task was to continuously report the perceived (left-or rightward) direction of tactile motion. In Experiment 1, each tactile stimulus was paired with an auditory beep, though odd-numbered taps were paired with an asynchronous beep, with audiotactile SOAs ranging from -75 ms to 75 ms. Perceived direction of tactile motion varied systematically with audiotactile SOA, indicative of a temporal-capture effect. In Experiment 2, two audiotactile SOAs-one short (75 ms), one long (325 ms)-were compared. The long-SOA condition preserved the crossmodal event structure (so the temporal-capture dynamics should have been similar to that in Experiment 1), but both beeps now occurred temporally close to the taps on one side (even-numbered taps). The two SOAs were found to produce opposite modulations of apparent motion, indicative of an influence of crossmodal grouping. In Experiment 3, only odd-numbered, but not even-numbered, taps were paired with auditory beeps. This abolished the temporal-capture effect and, instead, a dominant percept of apparent motion from the audiotactile side to the tactile-only side was observed independently of the SOA variation. These findings suggest that asymmetric crossmodal grouping leads to an attentional modulation of apparent motion, which inhibits crossmodal temporal-capture effects

    The deformation quantizations of the hyperbolic plane

    Full text link
    We describe the space of (all) invariant deformation quantizations on the hyperbolic plane as solutions of the evolution of a second order hyperbolic differential operator. The construction is entirely explicit and relies on non-commutative harmonic analytical techniques on symplectic symmetric spaces. The present work presents a unified method producing every quantization of the hyperbolic plane, and provides, in the 2-dimensional context, an exact solution to Weinstein's WKB quantization program within geometric terms. The construction reveals the existence of a metric of Lorentz signature canonically attached (or `dual') to the geometry of the hyperbolic plane through the quantization process.Comment: 26 pages, 5 figure

    Codimension one symplectic foliations and regular Poisson structures

    Get PDF
    Original manuscript June 21, 2011In this short note we give a complete characterization of a certain class of compact corank one Poisson manifolds, those equipped with a closed one-form defining the symplectic foliation and a closed two-form extending the symplectic form on each leaf. If such a manifold has a compact leaf, then all the leaves are compact, and furthermore the manifold is a mapping torus of a compact leaf. These manifolds and their regular Poisson structures admit an extension as the critical hypersurface of a b-Poisson manifold as we will see in [9]

    Spatially uninformative sounds increase sensitivity for visual motion change

    Get PDF
    It has recently been shown that spatially uninformative sounds can cause a visual stimulus to pop out from an array of similar distractor stimuli when that sound is presented in temporal proximity to a feature change in the visual stimulus. Until now, this effect has predominantly been demonstrated by using stationary stimuli. Here, we extended these results by showing that auditory stimuli can also improve the sensitivity of visual motion change detection. To accomplish this, we presented moving visual stimuli (small dots) on a computer screen. At a random moment during a trial, one of these stimuli could abruptly move in an orthogonal direction. Participants’ task was to indicate whether such an abrupt motion change occurred or not by making a corresponding button press. If a sound (a short 1,000 Hz tone pip) co-occurred with the abrupt motion change, participants were able to detect this motion change more frequently than when the sound was not present. Using measures derived from signal detection theory, we were able to demonstrate that the effect on accuracy was due to increased sensitivity rather than to changes in response bias
    corecore