18,233 research outputs found
Photosynthesis and calcification in the calcifying algae Halimeda discoidea studied with microsensors
With microsensors, we measured the steady‐state microprofiles of O2, pH and Ca2+ on the topside of young segments of Halimeda discoidea, as well as the surface dynamics upon light–dark shifts. The effect of several inhibitors was studied. The steady‐state measurements showed that under high light intensity, calcium and protons were taken up, while O2 was produced. In the dark, O2 was consumed, the pH decreased to below seawater level and Ca2+ uptake was reduced to 50%. At low light intensity (12 mmol photons m‐2 s‐1), Ca2+ efflux was observed. Upon light–dark shifts, a complicated pattern of both the pH and calcium surface dynamics was observed. Illumination caused an initial pH decrease, followed by a gradual pH increase: this indicated that the surface pH of H. discoidea is determined by more than one light‐induced process. When photosynthesis was inhibited by dichlorophenyl dimethyl urea (DCMU), a strong acidification was observed upon illumination. The nature and physiological function of this putative pump is not known. The calcium dynamics followed all pH dynamics closely, both in the presence and absence of DCMU. The Ca‐channel blockers verapamil and nifedipine had no effect on the Ca2+ dynamics and steady‐state profiles. Thus, in H. discoidea, calcification is not regulated by the alga, but is a consequence of pH increase during photosynthesis. Acetazolamide had no effect on photosynthesis, whereas ethoxyzolamide inhibited photosynthesis at higher light intensities. Therefore, all carbonic anhydrase activity is intracellular. Carbonic anhydrase is required to alleviate the CO2 limitation. Calcification cannot supply sufficient protons and CO2 to sustain photosynthesis
Effect of disorder on the electronic properties of graphene: a theoretical approach
In order to manipulate the properties of graphene, its very important to
understand the electronic structure in presence of disorder. We investigate,
within a tight-binding description, the effects of disorder in the on-site
(diagonal disorder) term in the Hamiltonian as well as in the hopping integral
(off-diagonal disorder) on the electronic dispersion and density of states by
augmented space recursion method. Extrinsic off-diagonal disorder is shown to
have dramatic effects on the two-dimensional Dirac-cone, including asymmetries
in the band structures as well as the presence of discontinuous bands in
certain limits. Disorder-induced broadening, related to the scattering length
(or life-time) of electrons, is modified significantly with the increasing
strength of disorder. We propose that our theory is suitable to study the
effects of disorder in other 2D materials, e.g., a boron nitride monolayer.Comment: 11 pages, 8 figure
Lower-rim ferrocenyl substituted calixarenes: new electrochemical sensors for anions
New ferrocene substituted calix[4 and 5]arenes have been prepared and the crystal structure of a lower-rim substituted bis ferrocene calix[4]arene (7) has been elucidated. The respective ferrocene/ferrocenium redox-couples of compounds 6 (a calix[4]arene tetra ferrocene amide) and 8 (a calix[5]arene pentaferrocene amide) are shown to be significantly cathodically perturbed in the presence of anions by up to 160 mV in the presence of dihydrogen phosphate
Collaboration and teamwork: immersion and presence in an online learning environment
In the world of OTIS, an online Internet School for occupational therapists, students from four European countries were encouraged to work collaboratively through problem-based learning by interacting with each other in a virtual semi-immersive environment. This paper describes, often in their own words, the experience of European occupational therapy students working together across national and cultural boundaries. Collaboration and teamwork were facilitated exclusively through an online environment, since the students never met each other physically during the OTIS pilot course. The aim of the paper is to explore the observations that here was little interaction between students from different tutorial groups and virtual teamwork developed in each of the cross-cultural tutorial groups. Synchronous data from the students was captured during tutorial sessions and peer-booked meetings and analysed using the qualitative constructs of ‘immersion’, ‘presence’ and ‘reflection in learning’. The findings indicate that ‘immersion’ was experienced only to a certain extent. However, both ‘presence’ and shared presence were found by the students, within their tutorial groups, to help collaboration and teamwork. Other evidence suggests that communities of interest were established. Further study is proposed to support group work in an online learning environment. It is possible to conclude that collaborative systems can be designed, which encourage students to build trust and teamwork in a cross cultural online learning environment.</p
An agent-based architecture for managing the provision of community care - the INCA (Intelligent Community Alarm) experience
Community Care is an area that requires extensive cooperation
between independent agencies, each of which needs to meet its own objectives and targets. None are engaged solely in the delivery of community care, and need to integrate the service with their other responsibilities in a coherent and efficient manner. Agent technology provides the means by which effective cooperation can take place without compromising the essential security of both the client and the
agencies involved as the appropriate set of responses can be generated through negotiation between the parties without the need for access to the main information repositories that would be necessary with conventional collaboration models. The autonomous nature of agents also means that a variety of agents can cooperate
together with various local capabilities, so long as they conform to the relevant messaging requirements. This allows a variety of agents, with capabilities tailored to the carers to which they are attached to be developed so that cost-effective solutions can be provided.
</p
The light curve of the companion to PSR B1957+20
We present a new analysis of the light curve for the secondary star in the
eclipsing binary millisecond pulsar system PSR B1957+20. Combining previous
data and new data points at minimum from the Hubble Space Telescope, we have
100% coverage in the R-band. We also have a number of new K_s-band data points,
which we use to constrain the infrared magnitude of the system. We model this
with the Eclipsing Light Curve code (ELC). From the modelling with the ELC code
we obtain colour information about the secondary at minimum light in BVRI and
K. For our best fit model we are able to constrain the system inclination to 65
+/- 2 degrees for pulsar masses ranging from 1.3 -- 1.9 M_sun. The pulsar mass
is unconstrained. We also find that the secondary star is not filling its Roche
lobe. The temperature of the un-irradiated side of the companion is in
agreement with previous estimates and we find that the observed temperature
gradient across the secondary star is physically sustainable.Comment: 6 pages, 4 figures & 3tables. Accepted for publication in MNRA
Excitons in Electrostatic Traps
We consider in-plane electrostatic traps for indirect excitons in coupled
quantum wells, where the traps are formed by a laterally modulated gate
voltage. An intrinsic obstacle for exciton confinement in electrostatic traps
is an in-plane electric field that can lead to exciton dissociation. We propose
a design to suppress the in-plane electric field and, at the same time, to
effectively confine excitons in the electrostatic traps. We present
calculations for various classes of electrostatic traps and experimental proof
of principle for trapping of indirect excitons in electrostatic traps.Comment: 4 pages, 3 figure
The provision of education and training for healthcare professionals through the medium of the internet
This paper describes a new initiative to provide Internet based courses to student and professional occupational therapists in four centres in the UK, Belgium the Netherlands and Sweden. The basis of this collaborative Occupational Therapy Internet School (OTIS) is the concept of the “Virtual College”. This comprises the design and implementation of a sophisticated Internet-based system through which courses can be managed, prepared and delivered online in an effective fashion, and where students can communicate both with the staff and their peers. The aim is to support and facilitate the whole range of educational activities within a remote electronic environment. A major feature of the course organisation is the adoption of a problem-based approach in which students will collaborate internationally to propose effective intervention in given case study scenarios.
The paper outlines the rationale for OTIS, the content and structure of the courseware, the technical specification of the system and evaluation criteria. In addition to the more conventional web-based learning facilities generally offered, a number of agent-based approaches are being adopted to assist in the management of the course by ensuring the proper delivery of course materials and to assist the functioning of project groups. </p
- …
