100 research outputs found

    Revisiting the role of GSK3, a modulator of innate immunity, in idiopathic inclusion body myositis

    Get PDF
    Idiopathic or sporadic inclusion body myositis (IBM) is the leading age-related (onset > 50 years of age) autoimmune muscular pathology, resulting in significant debilitation in affected individuals. Once viewed as primarily a degenerative disorder, it is now evident that much like several other neuro-muscular degenerative disorders, IBM has a major autoinflammatory component resulting in chronic inflammation-induced muscle destruction. Thus, IBM is now considered primarily an inflammatory pathology. To date, there is no effective treatment for sporadic inclusion body myositis, and little is understood about the pathology at the molecular level, which would offer the best hopes of at least slowing down the degenerative process. Among the previously examined potential molecular players in IBM is glycogen synthase kinase (GSK)-3, whose role in promoting TAU phosphorylation and inclusion bodies in Alzheimer’s disease is well known. This review looks to re-examine the role of GSK3 in IBM, not strictly as a promoter of TAU and Abeta inclusions, but as a novel player in the innate immune system, discussing some of the recent roles discovered for this well-studied kinase in inflammatory-mediated pathology

    Ankrd2/ARPP is a novel Akt2 specific substrate andregulates myogenic differentiation upon cellular exposure to H(2)O(2).

    Get PDF
    Activation of Akt-mediated signaling pathways is crucial for survival, differentiation, and regeneration of muscle cells. A proteomic-based search for novel substrates of Akt was therefore undertaken in C(2)C(12) murine muscle cells exploiting protein characterization databases in combination with an anti-phospho-Akt substrate antibody. A Scansite database search predicted Ankrd2 (Ankyrin repeat domain protein 2, also known as ARPP) as a novel substrate of Akt. In vitro and in vivo studies confirmed that Akt phosphorylates Ankrd2 at Ser-99. Moreover, by kinase assay with recombinant Akt1 and Akt2, as well as by single-isoform silencing, we demonstrated that Ankrd2 is a specific substrate of Akt2. Ankrd2 is typically found in skeletal muscle cells, where it mediates the transcriptional response to stress conditions. In an attempt to investigate the physiological implications of Ankrd2 phosphorylation by Akt2, we found that oxidative stress induced by H(2)O(2) triggers this phosphorylation. Moreover, the forced expression of a phosphorylation-defective mutant form of Ankrd2 in C(2)C(12) myoblasts promoted a faster differentiation program, implicating Akt-dependent phosphorylation at Ser-99 in the negative regulation of myogenesis in response to stress conditions

    Expression profiling of ANKRD1 in rhabdomyosarcoma cell lines

    Get PDF
    Introduction: Rhabdomyosarcoma (RMS) is the most common soft tissue malignancy in children and adolescents. Respecting the age of the patients and the tumor aggressiveness, investigation of the molecular mechanisms of RMS tumorigenesis is essential, most notably due to the possible identification of novel therapeutic targets. To contribute to a better understanding of the molecular pathology of RMS, we investigated ANKRD1 (ankyrin repeat domain 1) gene, considered a potential RMS diagnostic marker. The changes in its expression are related to carcinogenesis and resistance to chemotherapy in several types of tumors.EACR 2023: Innovative Cancer Science, 12-15 June 2023, Torino, Ital

    PLC-beta 1 regulates the expression of miR-210 during mithramycin-mediated erythroid differentiation in K562 cells

    Get PDF
    PLC-beta 1 (PLCβ1) inhibits in human K562 cells erythroid differentiation induced by mithramycin (MTH) by targeting miR-210 expression. Inhibition of miR-210 affects the erythroid differentiation pathway and it occurs to a greater extent in MTH-treated cells. Overexpression of PLCβ1 suppresses the differentiation of K562 elicited by MTH as demonstrated by the absence of γ-globin expression. Inhibition of PLCβ1 expression is capable to promote the differentiation process leading to a recovery of γ-globin gene even in the absence of MTH. Our experimental evidences suggest that PLCβ1 signaling regulates erythropoiesis through miR-210. Indeed overexpression of PLCβ1 leads to a decrease of miR-210 expression after MTH treatment. Moreover miR-210 is up-regulated when PLCβ1 expression is down-regulated. When we silenced PKCα by RNAi technique, we found a decrease in miR-210 and γ-globin expression levels, which led to a severe slowdown of cell differentiation in K562 cells and these effects were the same encountered in cells overexpressing PLCβ1. Therefore we suggest a novel role for PLCβ1 in regulating miR-210 and our data hint at the fact that, in human K562 erythroleukemia cells, the modulation of PLCβ1 expression is able to exert an impairment of normal erythropoiesis as assessed by γ-globin expression

    Current Concepts of Non-Coding RNAs in the Pathogenesis of Non-Clear Cell Renal Cell Carcinoma

    Get PDF
    Renal cell carcinoma (RCC) is a relatively rare malignancy of the urinary tract system. RCC is a heterogenous disease in terms of underlying histology and its associated underlying pathobiology, prognosis and treatment schedule. The most prevalent histological RCC subtype is clear-cell renal cell carcinoma (ccRCC), accounting for about 70-80% of all RCCs. Though the pathobiology and treatment schedule for ccRCC are well-established, non-ccRCC subtypes account for 20%-30% of RCC altogether, and their underlying molecular biology and treatment options are poorly defined. The class of non-coding RNAs-molecules that are generally not translated into proteins-are new cancer drivers and suppressors in all types of cancer. Of these, small non-coding microRNAs (miRNAs) contribute to carcinogenesis by regulating posttranscriptional gene silencing. Additionally, a growing body of evidence supports the role of long non-coding RNAs (lncRNAs) in cancer development and progression. Most studies on non-coding RNAs in RCC focus on clear-cell histology, and there is a relatively limited number of studies on non-ccRCC subtypes. The aim of this review is to give an overview of the current knowledge regarding the role of non-coding RNAs (including short and long non-coding RNAs) in non-ccRCC and to highlight possible implications as diagnostic, prognostic and predictive biomarkers

    Alternative Splicing, RNA Editing, and the Current Limits of Next Generation Sequencing

    Get PDF
    The advent of next generation sequencing (NGS) has fostered a shift in basic analytic strategies of a gene expression analysis in diverse pathologies for the purposes of research, pharmacology, and personalized medicine. What was once highly focused research on individual signaling pathways or pathway members has, from the time of gene expression arrays, become a global analysis of gene expression that has aided in identifying novel pathway interactions, the discovery of new therapeutic targets, and the establishment of disease-associated profiles for assessing progression, stratification, or a therapeutic response. But there are significant caveats to this analysis that do not allow for the construction of the full picture. The lack of timely updates to publicly available databases and the “hit and miss” deposition of scientific data to these databases relegate a large amount of potentially important data to “garbage”, begging the question, “how much are we really missing?” This brief perspective aims to highlight some of the limitations that RNA binding/modifying proteins and RNA processing impose on our current usage of NGS technologies as relating to cancer and how not fully appreciating the limitations of current NGS technology may negatively affect therapeutic strategies in the long run

    Patent Highlights August–September 2018

    No full text
    • …
    corecore