6,689 research outputs found
Computational Soundness for Dalvik Bytecode
Automatically analyzing information flow within Android applications that
rely on cryptographic operations with their computational security guarantees
imposes formidable challenges that existing approaches for understanding an
app's behavior struggle to meet. These approaches do not distinguish
cryptographic and non-cryptographic operations, and hence do not account for
cryptographic protections: f(m) is considered sensitive for a sensitive message
m irrespective of potential secrecy properties offered by a cryptographic
operation f. These approaches consequently provide a safe approximation of the
app's behavior, but they mistakenly classify a large fraction of apps as
potentially insecure and consequently yield overly pessimistic results.
In this paper, we show how cryptographic operations can be faithfully
included into existing approaches for automated app analysis. To this end, we
first show how cryptographic operations can be expressed as symbolic
abstractions within the comprehensive Dalvik bytecode language. These
abstractions are accessible to automated analysis, and they can be conveniently
added to existing app analysis tools using minor changes in their semantics.
Second, we show that our abstractions are faithful by providing the first
computational soundness result for Dalvik bytecode, i.e., the absence of
attacks against our symbolically abstracted program entails the absence of any
attacks against a suitable cryptographic program realization. We cast our
computational soundness result in the CoSP framework, which makes the result
modular and composable.Comment: Technical report for the ACM CCS 2016 conference pape
Response to ‘Protected areas and climate change Reflections from a practitioner's perspective
Cliquet et al. 1 provide a thought-provoking analysis of the challenges posed to
the EU's protected areas by climate change. This paper seeks to build on some of
the perspectives they brought to what is a highly challenging area of nature
conservation law, policy and practice. While there is much to support in their
analysis of the relationships between protected areas and climate change, there
are two key strands we seek to develop further, based on the RSPB's experience
of this area of nature conservation policy and practice: first, is the
ecological model for adapting to climate change and second, the legal framework
provided by the Birds2 and Habitats3 Directives (the Nature Directives) as it
relates to the delivery of such adaptive actions
X-Ray Detection of Transient Magnetic Moments Induced by a Spin Current in Cu
We have used a MHz lock-in x-ray spectro-microscopy technique to directly
detect changes of magnetic moments in Cu due to spin injection from an adjacent
Co layer. The elemental and chemical specificity of x-rays allows us to
distinguish two spin current induced effects. We detect the creation of
transient magnetic moments of on Cu atoms
within the bulk of the 28 nm thick Cu film due to spin-accumulation. The moment
value is compared to predictions by Mott's two current model. We also observe
that the hybridization induced existing magnetic moments on Cu interface atoms
are transiently increased by about 10% or .
This reveals the dominance of spin-torque alignment over Joule heat induced
disorder of the interfacial Cu moments during current flow
Desempenho agronômico de genótipos de feijão em dois níveis de investimento.
O objetivo deste trabalho foi avaliar a produtividade de grãos de cultivares de feijão em dois níveis de investimento. O maior nível de investimento, caracterizado pelo uso de maior dose de fertilizante e maior número de aplicações de fungicidas, não influenciou na produtividade de cultivares de feijão, em relação ao manejo usual
Understanding and optimising the packing density of perylene bisimide layers on CVD-grown graphene
The non-covalent functionalisation of graphene is an attractive strategy to
alter the surface chemistry of graphene without damaging its superior
electrical and mechanical properties. Using the facile method of aqueous-phase
functionalisation on large-scale CVD-grown graphene, we investigated the
formation of different packing densities in self-assembled monolayers (SAMs) of
perylene bisimide derivatives and related this to the amount of substrate
contamination. We were able to directly observe wet-chemically deposited SAMs
in scanning tunnelling microscopy (STM) on transferred CVD graphene and
revealed that the densely packed perylene ad-layers adsorb with the conjugated
{\pi}-system of the core perpendicular to the graphene substrate. This
elucidation of the non-covalent functionalisation of graphene has major
implications on controlling its surface chemistry and opens new pathways for
adaptable functionalisation in ambient conditions and on the large scale.Comment: 27 pages (including SI), 10 figure
Direct Observation of Large Amplitude Spin Excitations Localized in a Spin-Transfer Nanocontact
We report the direct observation of large amplitude spin-excitations
localized in a spin-transfer nanocontact using scanning transmission x-ray
microscopy. Experiments were conducted using a nanocontact to an ultrathin
ferromagnetic multilayer with perpendicular magnetic anisotropy. Element
resolved x-ray magnetic circular dichroism images show an abrupt onset of spin
excitations at a threshold current that are localized beneath the nanocontact,
with average spin precession cone angles of 25{\deg} at the contact center. The
results strongly suggest that we have observed a localized magnetic soliton.Comment: 5 pages, 3 figure
Domain-wall depinning assisted by pure spin currents
We study the depinning of domain walls by pure diffusive spin currents in a
nonlocal spin valve structure based on two ferromagnetic permalloy elements
with copper as the nonmagnetic spin conduit. The injected spin current is
absorbed by the second permalloy structure with a domain wall and from the
dependence of the wall depinning field on the spin current density we find an
efficiency of 6*10^{-14}T/(A/m^2), which is more than an order of magnitude
larger than for conventional current induced domain wall motion. Theoretically
we reproduce this high efficiency, which arises from the surface torques
exerted by the absorbed spin current that lead to efficient depinning.Comment: 11 pages, 3 figures, accepted for publication in Phys. Rev. Let
- …
