814 research outputs found
Mixing-induced anisotropic correlations in molecular crystalline systems
We investigate the structure of mixed thin films composed of pentacene (PEN)
and diindenoperylene (DIP) using X-ray reflectivity and grazing incidence X-ray
diffraction. For equimolar mixtures we observe vanishing in-plane order
coexisting with an excellent out-of-plane order, a yet unreported disordering
behavior in binary mixtures of organic semiconductors, which are crystalline in
their pure form. One approach to rationalize our findings is to introduce an
anisotropic interaction parameter in the framework of a mean field model. By
comparing the structural properties with those of other mixed systems, we
discuss the effects of sterical compatibility and chemical composition on the
mixing behavior, which adds to the general understanding of interactions in
molecular mixtures.Comment: 5 pages, 5 figures, accepted by Phys. Rev. Let
Electron capture on iron group nuclei
We present Gamow-Teller strength distributions from shell model Monte Carlo
studies of fp-shell nuclei that may play an important role in the pre-collapse
evolution of supernovae. We then use these strength distributions to calculate
the electron-capture cross sections and rates in the zero-momentum transfer
limit. We also discuss the thermal behavior of the cross sections. We find
large differences in these cross sections and rates when compared to the naive
single-particle estimates. These differences need to be taken into account for
improved modeling of the early stages of type II supernova evolution
Gamow-Teller strength distributions in fp-shell nuclei
We use the shell model Monte Carlo method to calculate complete 0f1p-shell
response functions for Gamow-Teller (GT) operators and obtain the corresponding
strength distributions using a Maximum Entropy technique. The approach is
validated against direct diagonalization for 48Ti. Calculated GT strength
distributions agree well with data from (n,p) and (p,n) reactions for nuclei
with A=48-64. We also calculate the temperature evolution of the GT+
distributions for representative nuclei and find that the GT+ distributions
broaden and the centroids shift to lower energies with increasing temperature
Half-lives and pre-supernova weak interaction rates for nuclei away from the stability line
A detailed model for the calculation of beta decay rates of the shell
nuclei for situations prevailing in pre-supernova and collapse phases of
evolution of the core of massive stars leading to supernova explosion has been
extended for electron-capture rates. It can also be used to determine the
half-lives of neutron-rich nuclei in the shell. The model uses an
averaged Gamow-Teller (GT) strength function. But it can also use the
experimental log ft values and GT strength function from reaction
studies wherever available. The calculated rate includes contributions from
each of the low-lying excited states of the mother including some specific
resonant states ("back resonance") having large GT matrix elements.Comment: 11 pages; Latex; no figs; version to appear in J. Phys.
The Role of Electron Captures in Chandrasekhar Mass Models for Type Ia Supernovae
The Chandrasekhar mass model for Type Ia Supernovae (SNe Ia) has received
increasing support from recent comparisons of observations with light curve
predictions and modeling of synthetic spectra. It explains SN Ia events via
thermonuclear explosions of accreting white dwarfs in binary stellar systems,
being caused by central carbon ignition when the white dwarf approaches the
Chandrasekhar mass. As the electron gas in white dwarfs is degenerate,
characterized by high Fermi energies for the high density regions in the
center, electron capture on intermediate mass and Fe-group nuclei plays an
important role in explosive burning. Electron capture affects the central
electron fraction Y_e, which determines the composition of the ejecta from such
explosions. Up to the present, astrophysical tabulations based on shell model
matrix elements were only available for light nuclei in the sd-shell. Recently
new Shell Model Monte Carlo (SMMC) and large-scale shell model diagonalization
calculations have also been performed for pf-shell nuclei. These lead in
general to a reduction of electron capture rates in comparison with previous,
more phenomenological, approaches. Making use of these new shell model based
rates, we present the first results for the composition of Fe-group nuclei
produced in the central regions of SNe Ia and possible changes in the
constraints on model parameters like ignition densities and burning front
speeds.Comment: 26 pages, 8 figures, submitted to Ap
Localization of tenascin in human skin wounds
A total of 56 surgically treated human skin wounds with a wound age between 8h and 7 months were investigated. Tenascin was visualized by immunohistochemistry and appeared first in the wound area pericellularly around fibroblastic cells approximately 2 days after wounding. A network-like interstitial positive staining pattern was first detectable in 3-day-old skin wounds. In all wounds with an age of 5 days or more, intensive reactivity for tenascin could be observed in the lesional area (dermal-epidermal junction, wound edge, areas of bleeding). In wounds with an age of more than approximately 1.5 months no positive staining occurred in the scar tissue. In conclusion, for forensic purposes, positive staining for tenascin restricted to the pericellular area of fibroblastic cells indicates a wound age of at least 2 days. Network-like structures appear after approximately 3 days or more. Since tenascin seems to be regularly detectable in skin wounds older than 5 days, the lack of a positive reaction in a sufficient number of specimens indicates a wound age of less than 5 days. The lack of a positive reaction in the granulation tissue of wounds with advanced wound age indicates a survival time of more than about 1.5 months, but a positive staining in older wounds cannot be excluded
Electron fraction constraints based on Nuclear Statistical Equilibrium with beta equilibrium
The electron-to-nucleon ratio or electron fraction is a key parameter in many
astrophysical studies. Its value is determined by weak-interaction rates that
are based on theoretical calculations subject to several nuclear physics
uncertainties. Consequently, it is important to have a model independent way of
constraining the electron fraction value in different astrophysical
environments. Here we show that nuclear statistical equilibrium combined with
beta equilibrium can provide such a constraint. We test the validity of this
approximation in presupernova models and give lower limits for the electron
fraction in type Ia supernova and accretion-induced collapse.Comment: 10 pages, 9 figures, Astronomy and Astrophysic
Structural studies of the 26S proteasome and its interaction with Ubp6 by cryo-electron microscopy
Gamow-Teller strength in 54Fe and 56Fe
Through a sequence of large scale shell model calculations, total
Gamow-Teller strengths ( and ) in Fe and Fe are
obtained. They reproduce the experimental values once the operator
is quenched by the standard factor of . Comparisons are made with recent
Shell Model Monte Carlo calculations. Results are shown to depend critically on
the interaction. From an analysis of the GT+ and GT strength functions it is
concluded that experimental evidence is consistent with the sum rule.Comment: 6 pages, RevTeX 3.0 using psfig, 7 Postscript figures included using
uufile
- …
