7 research outputs found

    Supplementary Material for: Early Environmental Enrichment Enhances Abnormal Brain Connectivity in a Rabbit Model of Intrauterine Growth Restriction

    No full text
    <p><b><i>Introduction:</i></b> The structural correspondence of neurodevelopmental impairments related to intrauterine growth restriction (IUGR) that persists later in life remains elusive. Moreover, early postnatal stimulation strategies have been proposed to mitigate these effects. Long-term brain connectivity abnormalities in an IUGR rabbit model and the effects of early postnatal environmental enrichment (EE) were explored. <b><i>Materials and Methods:</i></b> IUGR was surgically induced in one horn, whereas the contralateral one produced the controls. Postnatally, a subgroup of IUGR animals was housed in an enriched environment. Functional assessment was performed at the neonatal and long-term periods. At the long-term period, structural brain connectivity was evaluated by means of diffusion-weighted brain magnetic resonance imaging and by histological assessment focused on the hippocampus. <b><i>Results:</i></b> IUGR animals displayed poorer functional results and presented altered whole-brain networks and decreased median fractional anisotropy in the hippocampus. Reduced density of dendritic spines and perineuronal nets from hippocampal neurons were also observed. Of note, IUGR animals exposed to enriched environment presented an improvement in terms of both function and structure. <b><i>Conclusions:</i></b> IUGR is associated with altered brain connectivity at the global and cellular level. A strategy based on early EE has the potential to restore the neurodevelopmental consequences of IUGR.</p

    Boosted Regeneration and Reduced Denervated Muscle Atrophy by NeuroHeal in a Pre-clinical Model of Lumbar Root Avulsion with Delayed Reimplantation

    Get PDF
    Abstract The “gold standard” treatment of patients with spinal root injuries consists of delayed surgical reconnection of nerves. The sooner, the better, but problems such as injury-induced motor neuronal death and muscle atrophy due to long-term denervation mean that normal movement is not restored. Herein we describe a preclinical model of root avulsion with delayed reimplantation of lumbar roots that was used to establish a new adjuvant pharmacological treatment. Chronic treatment (up to 6 months) with NeuroHeal, a new combination drug therapy identified using a systems biology approach, exerted long-lasting neuroprotection, reduced gliosis and matrix proteoglycan content, accelerated nerve regeneration by activating the AKT pathway, promoted the formation of functional neuromuscular junctions, and reduced denervation-induced muscular atrophy. Thus, NeuroHeal is a promising treatment for spinal nerve root injuries and axonal regeneration after trauma

    The Impact of Exercise in Rodent Models of Chronic Pain

    No full text

    Long-Term Functional Outcomes and Correlation with Regional Brain Connectivity by MRI Diffusion Tractography Metrics in a Near-Term Rabbit Model of Intrauterine Growth Restriction

    No full text
    corecore