4,457 research outputs found

    Corruption, Optimal Taxation and Growth

    Get PDF
    How does the presence of corruption affect the optimal mix between consumption and income taxation? In this paper we examine this issue using a simple neoclassical growth model, with a self-seeking and corrupt public sector. We find that the optimal tax mix in a corrupt economy is one that relies more heavily upon consumption taxes than on income taxes, relative to an economy without corruption. Our model also allows us to investigate the effect of corruption on the optimal size of government, and our results indicate that the optimal size of government balances the wishes of the corrupt public sector for a larger government, and so greater opportunities for corruption, with those in the private sector who prefer a smaller government. Not surprisingly, the optimal size of government is smaller in an economy with corruption than in one without corruption.endogenous growth, corruption, taxation

    Results and speculations concerning Comer relation algebras and the flexible atom conjecture

    Full text link
    We study some finite integral symmetric relation algebras whose forbidden cycles are all 2-cycles. These algebras arise from a finite field construction due to Comer. We consider conditions that allow other finite algebras to embed into these Comer algebras, and as an application give the first known finite representation of relation algebra 346534_{65}, one of whose atoms is flexible. We conclude with some speculation about how the ideas presented here might contribute to a proof of the flexible atom conjecture

    Crude awakening: behind the surge in oil prices

    Get PDF
    The first few months of 2008 saw crude oil prices breach one barrier after another. They topped 100abarrelforthefirsttimeonFeb.19,thenrosepast100 a barrel for the first time on Feb. 19, then rose past 103.76 about two weeks later, surpassing the previous inflation-adjusted peak, established in 1980. In April and early May, oil prices pushed past 110andthen110 and then 120 a barrel and beyond. ; These milestones reflect a new era in oil markets. After the tumult of the early 1980s, prices remained relatively tame for two decades - in both real and nominal terms. This long stretch of stability ended in 2004, when oil topped $40 a barrel for the first time, then embarked on a steep climb that continued into this year. ; Modern economies run on oil, so it's important to understand how recent years - with their surging prices - differ from the preceding two decades. A good starting point is strong demand, which has pushed world oil markets close to capacity. New supplies haven't kept up with this demand, fueling expectations that oil markets will remain tight for the foreseeable future. A weakening dollar has put upward pressure on the price of a commodity that trades in the U.S. currency. And because a large share of oil production takes place in politically unstable regions, fears of supply disruptions loom over markets. ; These factors have fed the steady, sometimes swift rise of oil prices in recent years. Their persistence suggests the days of relatively cheap oil are over and the global economy faces a future of high energy prices. How they play out will shape oil markets - and determine prices - for years to come.Petroleum products - Prices ; Petroleum industry and trade ; Organization of Petroleum Exporting Countries ; Dollar, American

    Microscale variations in CH4 fluxes from boreal mires

    Get PDF

    Spontaneous breaking of rotational symmetry in superconductors

    Full text link
    We show that homogeneous superconductors with broken spin/isospin symmetry lower their energy via a transition to a novel superconducting state where the Fermi-surfaces are deformed to a quasi-ellipsoidal form at zero total momentum of Cooper pairs. In this state, the gain in the condensation energy of the pairs dominates over the loss in the kinetic energy caused by the lowest order (quadrupole) deformation of Fermi-surfaces from the spherically symmetric form. There are two energy minima in general, corresponding to the deformations of the Fermi-spheres into either prolate or oblate forms. The phase transition from spherically symmetric state to the superconducting state with broken rotational symmetry is of the first order.Comment: 5 pages, including 3 figures, published versio

    Spatially inhomogeneous condensate in asymmetric nuclear matter

    Full text link
    We study the isospin singlet pairing in asymmetric nuclear matter with nonzero total momentum of the condensate Cooper pairs. The quasiparticle excitation spectrum is fourfold split compared to the usual BCS spectrum of the symmetric, homogeneous matter. A twofold splitting of the spectrum into separate branches is due to the finite momentum of the condensate, the isospin asymmetry, or the finite quasiparticle lifetime. The coupling of the isospin singlet and triplet paired states leads to further twofold splitting of each of these branches. We solve the gap equation numerically in the isospin singlet channel in the case where the pairing in the isospin triplet channel is neglected and find nontrivial solutions with finite total momentum of the pairs. The corresponding phase assumes a periodic spatial structure which carries a isospin density wave at constant total number of particles. The phase transition from the BCS to the inhomogeneous superconducting phase is found to be first order and occurs when the density asymmetry is increased above 0.25. The transition from the inhomogeneous superconducting to the unpaired normal state is second order. The maximal values of the critical total momentum (in units of the Fermi momentum) and the critical density asymmetry at which condensate disappears are Pc/pF=0.3P_c/p_F = 0.3 and αc=0.41\alpha_c = 0.41. The possible spatial forms of the ground state of the inhomogeneous superconducting phase are briefly discussed.Comment: 13 pages, including 3 figues, uses RevTeX; minor corrections, PRC in pres

    Critical Enhancement of the In-medium Nucleon-Nucleon Cross Section at low Temperatures

    Full text link
    The in-medium nucleon-nucleon cross section is calculated starting from the thermodynamic T-matrix at finite temperatures. The corresponding Bethe-Salpeter-equation is solved using a separable representation of the Paris nucleon-nucleon-potential. The energy-dependent in-medium N-N cross section at a given density shows a strong temperature dependence. Especially at low temperatures and low total momenta, the in-medium cross section is strongly modified by in-medium effects. In particular, with decreasing temperature an enhancement near the Fermi energy is observed. This enhancement can be discussed as a precursor of the superfluid phase transition in nuclear matter.Comment: 10 pages with 4 figures (available on request from the authors), MPG-VT-UR 34/94 accepted for publication in Phys. Rev.

    Anisotropic multi-gap superfluid states in nuclear matter

    Full text link
    It is shown that under changing density or temperature a nucleon Fermi superfluid can undergo a phase transition to an anisotropic superfluid state, characterized by nonvanishing gaps in pairing channels with singlet-singlet (SS) and triplet-singlet (TS) pairing of nucleons (in spin and isospin spaces). In the SS pairing channel nucleons are paired with nonzero orbital angular momentum. Such two-gap states can arise as a result of branching from the one-gap solution of the self-consistent equations, describing SS or TS pairing of nucleons, that depends on the relationship between SS and TS coupling constants at the branching point. The density/temperature dependence of the order parameters and the critical temperature for transition to the anisotropic two-gap state are determined in a model with the SkP effective interaction. It is shown that the anisotropic SS-TS superfluid phase corresponds to a metastable state in nuclear matter.Comment: Prepared with RevTeX4, 7p., 5 fi
    corecore