7 research outputs found

    Role of Misfolded N-CoR Mediated Transcriptional Deregulation of Flt3 in Acute Monocytic Leukemia (AML)-M5 Subtype

    Get PDF
    The nuclear receptor co-repressor (N-CoR) is a key component of the generic multi-protein complex involved in transcriptional control. Flt3, a key regulator of hematopoietic cell growth, is frequently deregulated in AML (acute myeloid leukemia). Here, we report that loss of N-CoR-mediated transcriptional control of Flt3 due to misfolding, contributes to malignant growth in AML of the M5 subtype (AML-M5). An analysis of hematopoietic genes in AML cells led to the identification of Flt3 as a transcriptional target of N-CoR. Flt3 level was inversely related to N-CoR status in various leukemia cells. N-CoR was associated with the Flt3 promoter in-vivo, and a reporter driven by the Flt3 promoter was effectively repressed by N-CoR. Blocking N-CoR loss with Genistein; an inhibitor of N-CoR misfolding, significantly down-regulated Flt3 levels regardless of the Flt3 receptor mutational status and promoted the differentiation of AML-M5 cells. While stimulation of the Flt3 receptor with the Flt3 ligand triggered N-CoR loss, Flt3 antibody mediated blockade of Flt3 ligand-receptor binding led to N-CoR stabilization. Genetic ablation of N-CoR potentiated Flt3 ligand induced proliferation of BA/F3 cells. These findings suggest that N-CoR-induced repression of Flt3 might be crucial for limiting the contribution of the Flt3 signaling pathway on the growth potential of leukemic cells and its deregulation due to N-CoR loss in AML-M5, could contribute to malignant growth by conferring a proliferative advantage to the leukemic blasts. Therapeutic restoration of N-CoR function could thus be a useful approach in restricting the contribution of the Flt3 signaling pathway in AML-M5 pathogenesis

    The BCL-2 promoter (-938C > A) polymorphism does not predict clinical outcome in chronic lymphocytic leukemia

    No full text
    The (-938C > A) polymorphism in the promoter region of the BCL-2 gene was recently associated with inferior time to treatment and overall survival in B-cell chronic lymphocytic leukemia (CLL) patients displaying the-938A/A genotype and may thus serve as an unfavorable genetic marker in CLL. Furthermore, the-938A/A genotype was associated with increased expression of Bcl-2. To investigate this further, we analyzed the-938 genotypes of the BCL-2 gene in 268 CLL patients and correlated data with treatment status, overall survival and known prognostic factors, for example, Binet stage, immunoglobulin heavy-chain variable (IGHV) mutational status and CD38 expression. In contrast to the recent report, the current cohort of CLL patients showed no differences either in time to treatment or overall survival in relation to usage of a particular genotype. In addition, no correlation was evident between the (-938C > A) genotypes and IGHV mutational status, Binet stage or CD38. Furthermore, the polymorphism did not appear to affect the Bcl-2 expression at the RNA level. Taken together, our data do not support the use of the (-938C > A) BCL-2 polymorphism as a prognostic marker in CLL and argue against its postulated role in modulating Bcl-2 levels

    Antileukemic activity of valproic acid in chronic lymphocytic leukemia B cells defined by microarray analysis.

    No full text
    Epigenetic code modifications by histone deacetylase inhibitors have recently been proposed as potential new therapies for hematological malignancies. Chronic lymphocytic leukemia (CLL) remains incurable despite the introduction of new treatments. CLL B cells are characterized by an apoptosis defect rather than excessive proliferation, but proliferation centers have been found in organs such as the bone marrow and lymph nodes. In this study, we analyzed gene expression modifications in CLL B cells after treatment with valproic acid (VPA), a well-tolerated anti-epileptic drug with HDAC inhibitory activity. CLL B cells obtained from 14 patients were treated in vitro with a concentration of 1 mM VPA for 4 h. VPA effects on gene expression were thereafter studied using Affymetrix technology, and some identified genes were validated by real-time PCR and western blot. We observed that VPA induced apoptosis by downregulating several anti-apoptotic genes and by upregulating pro-apoptotic genes. Furthermore, VPA significantly increased chemosensitivity to fludarabine, flavopiridol, bortezomib, thalidomide and lenalidomide. VPA inhibited the proliferation of CpG/IL2-stimulated CLL B cells and modulated many cell cycle messenger RNAs. In conclusion, exposure of CLL B cells to VPA induced apoptosis, potentiated chemotherapeutic agent effects and inhibited proliferation. These data strongly suggest the use of VPA in CLL treatment, particularly in combination with antileukemia agents.Journal ArticleResearch Support, Non-U.S. Gov'tSCOPUS: ar.jinfo:eu-repo/semantics/publishe

    Targeting the PI3K/AKT/mTOR Pathway in Non-Hodgkin’s Lymphoma: Results, Biology, and Development Strategies

    No full text
    Signaling by the PI3K/AKT/mTOR pathway is frequently deregulated in non-Hodgkin's lymphoma (NHL), prompting evaluation of the rapamycin-analog (rapalog) mTOR inhibitors in multiple clinical trials. The drugs show activity as single agents, and the rapalog temsirolimus is now accepted as a therapeutic option in relapsed/refractory mantle cell lymphoma. Response rates, however, are typically below 50%, resulting in remissions that are neither complete nor durable. Results of preclinical studies shed important new light on resistance mechanisms that may explain results. Looking ahead, it is likely PI3K/AKT/mTOR inhibition will find expanded roles in NHL therapy due to 1) assessments of the rapalogs in combination with other therapies and in less heavily pretreated patients, 2) the development and evaluation of multiple novel inhibitors of the pathway that may increase specificity and potency, 3) alternative treatment strategies able to bypass particular resistance mechanisms, and 4) increased efforts to identify biomarkers for better pretreatment patient stratification
    corecore