10 research outputs found

    Methods to Quantify Nanomaterial Association with, and Distribution across, the Blood-Brain Barrier in Vivo

    Get PDF
    The role and functional anatomy of the blood-brain barrier (BBB) is summarized to enable the investigator to appropriately address evaluation of nanomaterial interaction with, and distribution across, it into brain tissue (parenchyma). Transport mechanisms across the BBB are presented, in relation to nanomaterial physicochemical properties. Measures and test substances to assess BBB integrity/disruption/permeation are introduced, along with how they are used to interpret the results obtained with the presented methods. Experimental pitfalls and misinterpretation of results of studies of brain nanomaterial uptake are briefly summarized, that can be avoided with the methods presented in this chapter. Two methods are presented. The in situ brain perfusion technique is used to determine rate and extent of nanomaterial distribution into the brain. The capillary depletion method separates brain parenchymal tissue from the endothelial cells that contribute to the BBB. It is used to verify nanomaterial brain tissue entry. These methods are best used together, the latter refining the results obtained with the former. Details of the materials and equipment needed to conduct these methods, and description of the procedures and data interpretation, are provided

    Software product line test list generation based on harmony search algorithm with constraints support

    Get PDF
    In software product line (SPL), selecting product's features to be tested is an essential issue to enable the manufactories to release new products earlier than others. Practically, it is impossible to test all the products’ features (i.e. exhaustive testing). Evidence has shown that several SPL strategies have been proposed to generate the test list for testing purpose. Nevertheless, all the existing strategies failed to produce an optimum test list for all cases. Thus, the current study is aimed to develop a new SPL test list generation strategy based on Harmony Search (HS) algorithm, namely SPL-HS. SPL-HS generates a minimum number of test cases that cover all of the features that are required to be tested based on the required interaction degree (t). The results demonstrate that the performance of SPL-HS is able to compete with the existing SPL strategies for generating test list size

    Sinapic Acid Ameliorates Acetic Acid-Induced Ulcerative Colitis in Rats by Suppressing Inflammation, Oxidative Stress, and Apoptosis

    No full text
    Background: Ulcerative colitis (UC) is a long-term condition which results in inflammation and ulcers of the colon and rectum. The key indications of active disease are abdominal pain and diarrhea mixed with blood. Aims: We explore the underlying colon protective mechanism of sinapic acid (SA) against acetic acid (AA) induced ulcerative colitis in rats. The implications of inflammation, oxidative stress, and apoptosis are studied. Methodology: Twenty-four rats were distributed into four categories, normal control (NC), ulcerative colitis (UC), ulcerative Colitis with SA 40 mg/kg (SA 40 mg/kg + AA), and ulcerative colitis with prednisolone (PRDL 10 mg/kg + AA), and were pretreated orally with saline, saline and SA (40 mg/kg/day) or PRDL (10 mg/kg/day) respectively, for 7 days. UC was prompted by trans-rectal administration of 4% AA on the 5th day, colon tissues were surgically removed for gross morphology and histological inspection, oxidative stress, and inflammatory markers and immunoblot analysis of Bax, caspase-3, and Bcl-2. Results: Macroscopic and histological inspection demonstrated that both SA 40 mg/kg and PRDL (10 mg/kg/day) significantly ameliorates colonic injuries. In addition, both pretreatments significantly ameliorates AA-induced UC, oxidative stress, as indicated by suppressed malondialdehyde (MDA), nitric oxide (NO) levels and restoring antioxidant/oxidant balance as indicated by catalase and glutathione levels, suppressed inflammation via inhibiting cytokines TNF-α, IL-6, inflammatory markers MPO, PGE2, COX-2 and NF-κB and inhibiting the protein expression of Bax and caspase-3 apoptotic protein and increasing the anti-apoptotic protein, Bcl-2 thereby inhibiting apoptosis. Conclusion: Sinapic acid significantly ameliorates AA induced UC in rats by suppressing inflammation, oxidative stress, and apoptosis in colonic tissues which exhibits its potential for the management of UC

    Repurposing of Sitagliptin- Melittin Optimized Nanoformula against SARS-CoV-2; Antiviral Screening and Molecular Docking Studies

    No full text
    The outbreak of the COVID-19 pandemic in China has become an urgent health and economic challenge. The objective of the current work was to evaluate the efficacy of the combined complex of Sitagliptin (SIT) with melittin (MEL) against SARS-CoV-2 virus. SIT-MEL nano-conjugates were optimized by a full three-factor bi-level (23) factorial design. In addition, SIT concentration (mM, X1), MEL concentration (mM, X2), and pH (X3) were selected as the critical factors. Particle size (nm, Y1) and zeta potential (mV, Y2) were assessed as responses. Characterization of the optimized formula for Fourier-transformed infrared (FTIR) was carried out. The optimized formula showed particle size and zeta potential values of 77.42 nm and 27.67 mV, respectively. When compared with SIT and MEL, the combination of SIT-MEL complex has shown anti-viral potential against isolate of SARS-CoV-2 with IC50 values of 8.439 μM with significant improvement (p < 0.001). In addition, the complex showed IC50 in vitro 3CL-protease inhibition with IC50 7.216 µM. Molecular docking has revealed that formula components have good predicted pocket accommodation of the SARS-CoV-2 3-CL protease. An optimized formulation of SIT-MEL could guarantee both enhanced delivery to the target cells and the enhanced cellular uptake with promising activities against SARS-CoV-2

    Piceatannol-Loaded Emulsomes Exhibit Enhanced Cytostatic and Apoptotic Activities in Colon Cancer Cells

    No full text
    Piceatannol (PIC), a naturally occurring polyphenolic stilbene, has pleiotropic pharmacological activities. It has reported cytotoxic activities against different cancer cells. In the present study, PIC emulsomes (PIC-E) were formulated and assessed for cytotoxic activity. A Box&ndash;Behnken design was employed to investigate the influence of formulation factors on particle size and drug entrapment. After optimization, the formulation had a spherical shape with a particle size of 125.45 &plusmn; 1.62 nm and entrapment efficiency of 93.14% &plusmn; 2.15%. Assessment of cytotoxic activities indicated that the optimized PIC-E formula exhibited significantly lower IC50 against HCT 116 cells. Analysis of the cell cycle revealed the accumulation of cells in the G2-M phase as well as increased cell fraction in the sub-G1 phase, an indication of apoptotic-enhancing activity. Staining of cells with Annexin V indicated increased early and late apoptosis. Further, the cellular contents of caspase - 3 and Bax/Bcl-2 mRNA expression were significantly elevated by PIC-E. In addition, the mitochondrial membrane potential (MMP) was disturbed and reactive oxygen species (ROS) production was increased. In conclusion, PIC-E exhibited superior cell death-inducing activities against HCT 116 cells as compared to pure PIC. This is mediated, at least partly, by enhanced pro-apoptotic activity, disruption of MMP, and stimulation of ROS generation

    Familial/inherited cancer syndrome: a focus on the highly consanguineous Arab population

    No full text
    corecore