142 research outputs found

    Pancytopaenia and an abdominal mass

    Get PDF

    Cardiac failure in β-thalassemia: diagnosis, prevention and management

    Get PDF
    Heart failure always represented and still remains the leading cause of mortality in &beta; (&beta;)-thalassemia, despite the therapeutic advances and the considerable amelioration of prognosis accomplished over the last decades. High cardiac output due to chronic anemia and myocardial iron overload due to repetitive blood transfusions are the two main pathogenetic mechanisms causing heart failure in &beta;-thalassemia. In regularly treated thalassemia major patients, left ventricular dysfunction, resulting mainly from myocardial siderosis, is considered to be the primary cause of heart failure and thus the prevention, early recognition and effective management of iron overload is of key importance. However, the spectrum of cardiovascular complications that may ultimately lead to heart is wide and should be individually investigated in each one of the patients. Echocardiography is the main modality used for the regular follow-up and screening of asymptomatic patients and for the evaluation of patients with cardiac symptoms, while the T2* relaxation time provided by magnetic resonance imaging allows the accurate identification and quantification of myocardial iron burden and thus the proper guidance of iron chelation therapy.&nbsp;近几十年来,尽管治疗方法取得进步和预断方法得到显著改进,但是心脏衰竭仍是引起&beta;地中海贫血症患者死亡的主要原因。 慢性贫血导致的高心输出量和反复输血导致的心脏铁过载,是导致&beta;地中海贫血患者心脏衰竭的两大发病机制。 在常规治疗的重型地中海贫血患者中,心脏铁质沉着病引起的可逆性左心室功能障碍,被认为是心脏衰竭的主要原因。因此,预防、早期确诊和有效控制铁过载至关重要。 然而,最终导致心脏衰竭的心血管并发症的症状繁多,应对每个患者单独进行检查。 超声心动图仪是用于无症状患者定期随访、筛查和诊断有心脏病症状患者的主要仪器,磁共振成象显示的T2*松弛时间可更准确地识别和量化心脏的铁负荷,有助于正确引导铁螯合疗法。</p

    Effect of deferiprone or deferoxamine on right ventricular function in thalassemia major patients with myocardial iron overload

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Thalassaemia major (TM) patients need regular blood transfusions that lead to accumulation of iron and death from heart failure. Deferiprone has been reported to be superior to deferoxamine for the removal of cardiac iron and improvement in left ventricular (LV) function but little is known of their relative effects on the right ventricle (RV), which is being increasingly recognised as an important prognostic factor in cardiomyopathy. Therefore data from a prospective randomised controlled trial (RCT) comparing these chelators was retrospectively analysed to assess the RV responses to these drugs.</p> <p>Methods</p> <p>In the RCT, 61 TM patients were randomised to receive either deferiprone or deferoxamine monotherapy, and CMR scans for T2* and cardiac function were obtained. Data were re-analysed for RV volumes and function at baseline, and after 6 and 12 months of treatment.</p> <p>Results</p> <p>From baseline to 12 months, deferiprone reduced RV end systolic volume (ESV) from 37.7 to 34.2 mL (p = 0.008), whilst RV ejection fraction (EF) increased from 69.6 to 72.2% (p = 0.001). This was associated with a 27% increase in T2* (p < 0.001) and 3.1% increase in LVEF (p < 0.001). By contrast, deferoxamine showed no change in RVESV (38.1 to 39.1 mL, p = 0.38), or RVEF (70.0 to 69.9%, p = 0.93) whereas the T2* increased by 13% (p < 0.001), but with no change in LVEF (0.32%; p = 0.66). Analysis of between drugs treatment effects, showed significant improvements favouring deferiprone with a mean effect on RVESV of -1.82 mL (p = 0.014) and 1.16% for RVEF (p = 0.009). Using regression analysis the improvement in RVEF at 12 months was shown to be greater in patients with lower baseline EF values (p < 0.001), with a significant difference in RVEF of 3.5% favouring deferiprone over deferoxamine (p = 0.012).</p> <p>Conclusion</p> <p>In this retrospective analysis of a prospective RCT, deferiprone monotherapy was superior to deferoxamine for improvement in RVEF and end-systolic volume. This improvement in the RV volumes and function may contribute to the improved cardiac outcomes seen with deferiprone.</p

    Vascular Endothelial Dysfunction in β-Thalassemia Occurs Despite Increased eNOS Expression and Preserved Vascular Smooth Muscle Cell Reactivity to NO

    Get PDF
    The hereditary β-thalassemia major condition requires regular lifelong blood transfusions. Transfusion-related iron overloading has been associated with the onset of cardiovascular complications, including cardiac dysfunction and vascular anomalies. By using an untransfused murine model of β-thalassemia major, we tested the hypothesis that vascular endothelial dysfunction, alterations of arterial structure and of its mechanical properties would occur despite the absence of treatments.Vascular function and structure were evaluated ex vivo. Compared to the controls, endothelium-dependent vasodilation with acetylcholine was blunted in mesenteric resistance arteries of β-thalassemic mice while the endothelium-independent vasodilator (sodium nitroprusside) produced comparable vessel dilation, indicating endothelial cell impairment with preserved smooth muscle cell reactivity to nitric oxide (NO). While these findings suggest a decrease in NO bioavailability, Western blotting showed heightened expression of aortic endothelial NO synthase (eNOS) in β-thalassemia. Vascular remodeling of the common carotid arteries revealed increased medial elastin content. Under isobaric conditions, the carotid arteries of β-thalassemic mice exhibited decreased wall stress and softening due to structural changes of the vessel wall.A complex vasculopathy was identified in untransfused β-thalassemic mice characterized by altered carotid artery structure and endothelial dysfunction of resistance arterioles, likely attributable to reduced NO bioavailability despite enhanced vascular eNOS expression

    How early can myocardial iron overload occur in Beta thalassemia major?

    Get PDF
    BACKGROUND: Myocardial siderosis is the most common cause of death in patients with beta thalassemia major(TM). This study aimed at investigating the occurrence, prevalence and severity of cardiac iron overload in a young Chinese population with beta TM. METHODS AND RESULTS: We analyzed T2* cardiac magnetic resonance (CMR), left ventricular ejection fraction (LVEF) and serum ferritin (SF) in 201 beta TM patients. The median age was 9 years old. Patients received an average of 13 units of blood per year. The median SF level was 4536 ng/ml and 165 patients (82.1%) had SF>2500 ng/ml. Myocardial iron overload was detected in 68 patients (33.8%) and severe myocardial iron overload was detected in 26 patients (12.6%). Twenty-two patients ≤10 years old had myocardial iron overload, three of whom were only 6 years old. No myocardial iron overload was detected under the age of 6 years. Median LVEF was 64% (measured by CMR in 175 patients). Five of 6 patients with a LVEF<56% and 8 of 10 patients with cardiac disease had myocardial iron overload. CONCLUSIONS: The TM patients under follow-up at this regional centre in China patients are younger than other reported cohorts, more poorly-chelated, and have a high burden of iron overload. Myocardial siderosis occurred in patients younger than previously reported, and was strongly associated with impaired LVEF and cardiac disease. For such poorly-chelated TM patients, our data shows that the first assessment of cardiac T2* should be performed as early as 6 years old

    The efficacy of iron chelator regimes in reducing cardiac and hepatic iron in patients with thalassaemia major: a clinical observational study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Available iron chelation regimes in thalassaemia may achieve different changes in cardiac and hepatic iron as assessed by MR. The aim of this study was to assess the efficacy of four available iron chelator regimes in 232 thalassaemia major patients by assessing the rate of change in repeated measurements of cardiac and hepatic MR.</p> <p>Results</p> <p>For the heart, deferiprone and the combination of deferiprone and deferoxamine significantly reduced cardiac iron at all levels of iron loading. As patients were on deferasirox for a shorter time, a second analysis ("Initial interval analysis") assessing the change between the first two recorded MR results for both cardiac and hepatic iron (minimum interval 12 months) was made. Combination therapy achieved the most rapid fall in cardiac iron load at all levels and deferiprone alone was significantly effective with moderate and mild iron load. In the liver, deferasirox effected significant falls in iron load and combination therapy resulted in the most rapid decline.</p> <p>Conclusion</p> <p>With the knowledge of the efficacy of the different available regimes and the specific iron load in the heart and the liver, appropriate tailoring of chelation therapy should allow clearance of iron. Combination therapy is best in reducing both cardiac and hepatic iron, while monotherapy with deferiprone or deferasirox are effective in the heart and liver respectively. The outcomes of this study may be useful to physicians as to the chelation they should prescribe according to the levels of iron load found in the heart and liver by MR.</p

    Quantitative analysis of left atrial function in asymptomatic patients with b-thalassemia major using real-time three-dimensional echocardiography

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>There is strong evidence that left atrial (LA) size is a prognostic marker in a variety of heart diseases. Recently, real-time three-dimensional echocardiography (RT3DE) has been reported as a useful tool for studying the phasic changes of the left atrial volumes. The aim of this study was to investigate the performance of the left atrium in beta-thalassemic patients with preserved left ventricular ejection fraction (EF) and no iron overload, using RT3DE.</p> <p>Methods</p> <p>Twenty-eight asymptomatic b-thalassemic patients (32.2 ± 4.3 years old, 17 men) who were on iron chelating therapy, as well as 20 age- and sex-matched healthy controls underwent transthoracic RT3DE. The patient group had normal echocardiographic systolic and diastolic indices, while there was no myocardial iron disposition according to MRI. Apical full volume data sets were obtained and LA volumes were measured at 3 time points of the cardiac cycle: (1) maximum volume (LAmax) at end-systole, just before mitral valve opening; (2) minimum volume (LAmin) at end-diastole, just before mitral valve closure; and (3) volume before atrial active contraction (LApreA) obtained from the last frame before mitral valve reopening or at time of the P wave on the surface electrocardiogram. From the derived values, left atrial active and passive emptying volumes, as well as the respective emptying fractions were calculated.</p> <p>Results</p> <p>Left ventricular EF (59.2 ± 2.5% patients vs. 60.1 ± 2.1% controls), E/A, E/E' were similar between the two groups. Differences in the LAmax, LAmin and LApreA between b-thalassemic patients and controls were non-significant, LAmax:(35.5 ± 13.4 vs 31.8 ± 9.8)cm<sup>3</sup>, LAmin:(16.0 ± 6.0 vs. 13.5 ±4.2)cm<sup>3</sup>, and LApreA:(25.4 ± 9.8 vs. 24.3 ± 7.2)cm<sup>3</sup>. However, left atrial active emptying fraction was reduced in the patient group as compared to the healthy population (34.3 ± 16.4% vs. 43.2 ± 11.4%, p < 0.05).</p> <p>Conclusion</p> <p>RT3DE may be a novel technique for the evaluation of LA function in asymptomatic patients with b-Thalassemia Major. Among three-dimensional volumes and indices, left atrial active emptying fraction may be an early index of LA dysfunction in the specific patient population.</p

    Beta-thalassemia

    Get PDF
    Beta-thalassemias are a group of hereditary blood disorders characterized by anomalies in the synthesis of the beta chains of hemoglobin resulting in variable phenotypes ranging from severe anemia to clinically asymptomatic individuals. The total annual incidence of symptomatic individuals is estimated at 1 in 100,000 throughout the world and 1 in 10,000 people in the European Union. Three main forms have been described: thalassemia major, thalassemia intermedia and thalassemia minor. Individuals with thalassemia major usually present within the first two years of life with severe anemia, requiring regular red blood cell (RBC) transfusions. Findings in untreated or poorly transfused individuals with thalassemia major, as seen in some developing countries, are growth retardation, pallor, jaundice, poor musculature, hepatosplenomegaly, leg ulcers, development of masses from extramedullary hematopoiesis, and skeletal changes that result from expansion of the bone marrow. Regular transfusion therapy leads to iron overload-related complications including endocrine complication (growth retardation, failure of sexual maturation, diabetes mellitus, and insufficiency of the parathyroid, thyroid, pituitary, and less commonly, adrenal glands), dilated myocardiopathy, liver fibrosis and cirrhosis). Patients with thalassemia intermedia present later in life with moderate anemia and do not require regular transfusions. Main clinical features in these patients are hypertrophy of erythroid marrow with medullary and extramedullary hematopoiesis and its complications (osteoporosis, masses of erythropoietic tissue that primarily affect the spleen, liver, lymph nodes, chest and spine, and bone deformities and typical facial changes), gallstones, painful leg ulcers and increased predisposition to thrombosis. Thalassemia minor is clinically asymptomatic but some subjects may have moderate anemia. Beta-thalassemias are caused by point mutations or, more rarely, deletions in the beta globin gene on chromosome 11, leading to reduced (beta+) or absent (beta0) synthesis of the beta chains of hemoglobin (Hb). Transmission is autosomal recessive; however, dominant mutations have also been reported. Diagnosis of thalassemia is based on hematologic and molecular genetic testing. Differential diagnosis is usually straightforward but may include genetic sideroblastic anemias, congenital dyserythropoietic anemias, and other conditions with high levels of HbF (such as juvenile myelomonocytic leukemia and aplastic anemia). Genetic counseling is recommended and prenatal diagnosis may be offered. Treatment of thalassemia major includes regular RBC transfusions, iron chelation and management of secondary complications of iron overload. In some circumstances, spleen removal may be required. Bone marrow transplantation remains the only definitive cure currently available. Individuals with thalassemia intermedia may require splenectomy, folic acid supplementation, treatment of extramedullary erythropoietic masses and leg ulcers, prevention and therapy of thromboembolic events. Prognosis for individuals with beta-thalassemia has improved substantially in the last 20 years following recent medical advances in transfusion, iron chelation and bone marrow transplantation therapy. However, cardiac disease remains the main cause of death in patients with iron overload
    corecore