187 research outputs found
Disconnections in management theory and practice: poetry, numbers and postmodernism
This essay is concerned with what Abbinnett described as fundamental to the discourses of social science: truth and its construction. The central problem around which the narrative is built is a growing disconnection in one area of social science, management research, between how truth is frequently defined and used and the approaches taken to constructing that truth. The result of this is an intellectual impurity whereby management research occupies an incoherent intellectual space somewhere between modernism and postmodernism. Our argument is that, for a host of probable reasons, management research in many areas is dominated by the search for rational and scientific truth through the use of quantitative methodologies underpinned by a positivist philosophy. The result of this is frequently truth diluted rather than truth distilled. The essay discusses different routes to establishing a type of truth, the location of management research within a modern-postmodern continuum and the implications of this for management researchers. We begin, however, with a brief discussion of the nature of truth in social science
Is there really a value in entrepreneurship education?
This paper considers whether entrepreneurship education has a value outside of the education institutions in which it takes place. The paper takes an indirect form of enquiry and argues that entrepreneurship education is driven by three factors; the growing emphasis on supply side policy interventions in the economy; the emphasis placed on the agency of management in the growing literature on globalisation and international reforms to public sector organisations. The paper concludes that there is a tension between the activity as descriptive and the activity as promotion and until this tension is resolved it is unlikely that there will be clarity about the value of this form of education
Recommended from our members
Freshwater transport in the coupled ocean-atmosphere system: a passive ocean
Conservation of water demands that meridional ocean and atmosphere freshwater transports (FWT) are of equal magnitude but opposite in direction. This suggests that the atmospheric FWT and its associated latent heat (LH) transport could be thought of as a \textquotedblleft coupled ocean/atmosphere mode\textquotedblright. But what is the true nature of this coupling? Is the ocean passive or active?
Here we analyze a series of simulations with a coupled ocean-atmosphere-sea ice model employing highly idealized geometries but with markedly different coupled climates and patterns of ocean circulation. Exploiting streamfunctions in specific humidity coordinates for the atmosphere and salt coordinates for the ocean to represent FWT in their respective medium, we find that atmospheric FWT/LH transport is essentially independent of the ocean state. Ocean circulation and salinity distribution adjust to achieve a return freshwater pathway demanded of them by the atmosphere. So, although ocean and atmosphere FWTs are indeed coupled by mass conservation, the ocean is a passive component acting as a reservoir of freshwater
Afferent Neural Branching at Human Acupuncture Points: Do Needles Stimulate or Inhibit?
Background: Acupuncture has previously been considered to be stimulatory to the nervous system; however, the specific mechanism for this remains unknown, with the few published studies of acupuncture-point histology showing reduced numbers of nerves and neural receptors at acupuncture-point sites. Objective: This study was undertaken to visualize the neuroanatomic features of acupuncture points in humans. Materials and Methods: Light microscopy was performed on silver-stained sections of a human cadaver at P 6, and confocal microscopy was performed on PgP9.5 and P2X3 immunostained sections of 2 points (GB 20 and SP 6) from a live human volunteer. Results: At each point, but not at control sites, a single nerve bundle extending to the dermal–epidermal junction was identified where it branched into two parts, with each branch running perpendicularly, parallel to the dermal–epidermal junction. Conclusions: Acupuncture may incise afferent unmyelinated axonal branch points, disrupting both neural transmission to the spinal cord and crosstalk along meridians, while simultaneously stimulating larger, myelinated afferents, thus explaining both the immediate and long-lasting effects of acupuncture
Recommended from our members
The climatic significance of Late Ordovician-early Silurian black
The Ordovician-Silurian transition (455-430 Ma) is characterized by repeated climatic perturbations, concomitant with major changes in the global oceanic redox state best exemplified by the periodic deposition of black shales. The relationship between the climatic evolution and the oceanic redox cycles, however, remains largely debated. Here, using an ocean-atmosphere general circulation model accounting for ocean biogeochemistry (MITgcm), we investigate the mechanisms responsible for the burial of organic carbon immediately before, during and right after the latest Ordovician Hirnantian (445-444 Ma) glacial peak. Our results are compared with recent sedimentological and geochemical data. We show that the late Katian time slice (445 Ma), typified by the deposition of black shales at tropical latitudes, represents an unperturbed oceanic state, with regional organic carbon burial driven by the surface primary productivity. During the Hirnantian, our experiments predict a global oxygenation event, in agreement with the disappearance of the black shales in the sedimentary record. This suggests that deep-water burial of organic matter may not be a tenable triggering factor for the positive carbon excursion reported at that time. Our simulations indicate that the perturbation of the ocean circulation induced by the release of freshwater, in the context of the post-Hirnantian deglaciation, does not sustain over sufficiently long geological periods to cause the Rhuddanian (444 Ma) oceanic anoxic event. Input of nutrients to the ocean, through increased continental weathering and the leaching of newly-exposed glaciogenic sediments, may instead constitute the dominant control on the spread of anoxia in the early Silurian
Recommended from our members
Parameterizing the Impact of Unresolved Temperature Variability on the Large-Scale Density Field: 2. Modeling
Ocean circulation models have systematic errors in large-scale horizontal density gradients due to estimating the grid-cell-mean density by applying the nonlinear seawater equation of state to the grid-cell-mean water properties. In frontal regions where unresolved subgrid-scale (SGS) fluctuations are significant, dynamically relevant errors in the representation of current systems can result. A previous study developed a novel and computationally efficient parameterization of the unresolved SGS temperature variance and resulting density correction. This parameterization was empirically validated but not tested in an ocean model. In this study, we implement deterministic and stochastic variants of this parameterization in the pressure-gradient force term of a coupled ocean-sea ice configuration of the community Earth system model-modular ocean model version 6 and perform a suite of hindcast sensitivity experiments to investigate the ocean response. The parameterization leads to coherent changes in the large-scale ocean circulation and hydrography, particularly in the Nordic Seas and Labrador Sea, which are attributable in large part to changes in the seasonally varying upper-ocean exchange through Denmark Strait. In addition, the separated Gulf Stream strengthens and shifts equatorward, reducing a common bias in coarse-resolution ocean models. The ocean response to the deterministic and stochastic variants of the parameterization is qualitatively, albeit not quantitatively, similar, yet qualitative differences are found in various regions.
</p
Modeling transport and fate of riverine dissolved organic carbon in the Arctic Ocean
Author Posting. © American Geophysical Union, 2009. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Global Biogeochemical Cycles 23 (2009): GB4006, doi:10.1029/2008GB003396.The spatial distribution and fate of riverine dissolved organic carbon (DOC) in the Arctic may be significant for the regional carbon cycle but are difficult to fully characterize using the sparse observations alone. Numerical models of the circulation and biogeochemical cycles of the region can help to interpret and extrapolate the data and may ultimately be applied in global change sensitivity studies. Here we develop and explore a regional, three-dimensional model of the Arctic Ocean in which, for the first time, we explicitly represent the sources of riverine DOC with seasonal discharge based on climatological field estimates. Through a suite of numerical experiments, we explore the distribution of DOC-like tracers with realistic riverine sources and a simple linear decay to represent remineralization through microbial degradation. The model reproduces the slope of the DOC-salinity relationship observed in the eastern and western Arctic basins when the DOC tracer lifetime is about 10 years, consistent with published inferences from field data. The new empirical parameterization of riverine DOC and the regional circulation and biogeochemical model provide new tools for application in both regional and global change studies.I.M.M. and M.J.F. are
grateful to National Science Foundation for financial support
Long-term Earth-Moon evolution with high-level orbit and ocean tide models
Tides and Earth‐Moon system evolution are coupled over geological time. Tidal energy dissipation on Earth slows [Formula: see text] rotation rate, increases obliquity, lunar orbit semi‐major axis and eccentricity, and decreases lunar inclination. Tidal and core‐mantle boundary dissipation within the Moon decrease inclination, eccentricity and semi‐major axis. Here we integrate the Earth‐Moon system backwards for 4.5 Ga with orbital dynamics and explicit ocean tide models that are “high‐level” (i.e., not idealized). To account for uncertain plate tectonic histories, we employ Monte Carlo simulations, with tidal energy dissipation rates (normalized relative to astronomical forcing parameters) randomly selected from ocean tide simulations with modern ocean basin geometry and with 55, 116, and 252 Ma reconstructed basin paleogeometries. The normalized dissipation rates depend upon basin geometry and [Formula: see text] rotation rate. Faster Earth rotation generally yields lower normalized dissipation rates. The Monte Carlo results provide a spread of possible early values for the Earth‐Moon system parameters. Of consequence for ocean circulation and climate, absolute (un‐normalized) ocean tidal energy dissipation rates on the early Earth may have exceeded [Formula: see text] rate due to a closer Moon. Prior to [Formula: see text] , evolution of inclination and eccentricity is dominated by tidal and core‐mantle boundary dissipation within the Moon, which yield high lunar orbit inclinations in the early Earth‐Moon system. A drawback for our results is that the semi‐major axis does not collapse to near‐zero values at 4.5 Ga, as indicated by most lunar formation models. Additional processes, missing from our current efforts, are discussed as topics for future investigation
A regional physical–biogeochemical ocean model for marine resource applications in the Northeast Pacific (MOM6-COBALT-NEP10k v1.0)
Regional ocean models enable the generation of computationally affordable and regionally tailored ensembles of near-term forecasts and long-term projections of sufficient resolution to serve marine resource management. Climate change, however, has created marine resource challenges, such as shifting stock distributions, that cut across domestic and international management boundaries and have pushed regional modeling efforts toward “coastwide” approaches. Here, we present and evaluate a multidecadal hindcast with a Northeast Pacific regional implementation of the Modular Ocean Model, version 6, with sea ice and biogeochemistry that extends from the Chukchi Sea to the Baja California Peninsula at 10 km horizontal resolution (MOM6-COBALT-NEP10k, or NEP10k). This domain includes an Arctic-adjacent system with a broad, shallow shelf seasonally covered by sea ice (the eastern Bering Sea), a sub-Arctic system with upwelling in the Alaska Gyre and predominant downwelling winds and large freshwater forcing along the coast (the Gulf of Alaska), and a temperate, eastern boundary upwelling ecosystem (the California Current Ecosystem). The coastwide model was able to recreate seasonal and cross-ecosystem contrasts in numerous ecosystem-critical properties including temperature, salinity, inorganic nutrients, oxygen, carbonate saturation states, and chlorophyll. Spatial consistency between modeled quantities and observations generally extended to plankton ecosystems, though small to moderate biases were also apparent. Fidelity with observed zooplankton biomass, for example, was limited to first-order seasonal and cross-system contrasts. Temporally, simulated monthly surface and bottom temperature anomalies in coastal regions (<500 m deep) closely matched estimates from data-assimilative ocean reanalyses. Performance, however, was reduced in some nearshore regions coarsely resolved by the model's 10 km resolution grid and for point measurements. The time series of satellite-based chlorophyll anomaly estimates proved more difficult to match than temperature. System-specific ecosystem indicators were also assessed. In the eastern Bering Sea, NEP10k robustly matched observed variations, including recent large declines, in the area of the summer bottom water “cold pool” (<2 °C), which exerts a profound influence on eastern Bering Sea fisheries. In the Gulf of Alaska, the simulation captured patterns of sea surface height variability and variations in thermal, oxygen, and acidification risk associated with local modes of interannual to decadal climate variability. In the California Current Ecosystem, the simulation robustly captured variations in upwelling indices and coastal water masses, though discrepancies in the latter were evident in the Southern California Bight. Enhanced model resolution may reduce such discrepancies, but any benefits must be carefully weighed against computational costs given the intended use of this system for ensemble predictions and projections. Meanwhile, the demonstrated NEP10k skill level herein, particularly in recreating cross-ecosystem contrasts and the time variation of ecosystem indicators over multiple decades, suggests considerable immediate utility for coastwide retrospective and predictive applications.</p
SPEAR: The Next Generation GFDL Modeling System for Seasonal to Multidecadal Prediction and Projection
We document the development and simulation characteristics of the next generation modeling system for seasonal to decadal prediction and projection at the Geophysical Fluid Dynamics Laboratory (GFDL). SPEAR (Seamless System for Prediction and EArth System Research) is built from component models recently developed at GFDL—the AM4 atmosphere model, MOM6 ocean code, LM4 land model, and SIS2 sea ice model. The SPEAR models are specifically designed with attributes needed for a prediction model for seasonal to decadal time scales, including the ability to run large ensembles of simulations with available computational resources. For computational speed SPEAR uses a coarse ocean resolution of approximately 1.0° (with tropical refinement). SPEAR can use differing atmospheric horizontal resolutions ranging from 1° to 0.25°. The higher atmospheric resolution facilitates improved simulation of regional climate and extremes. SPEAR is built from the same components as the GFDL CM4 and ESM4 models but with design choices geared toward seasonal to multidecadal physical climate prediction and projection. We document simulation characteristics for the time mean climate, aspects of internal variability, and the response to both idealized and realistic radiative forcing change. We describe in greater detail one focus of the model development process that was motivated by the importance of the Southern Ocean to the global climate system. We present sensitivity tests that document the influence of the Antarctic surface heat budget on Southern Ocean ventilation and deep global ocean circulation. These findings were also useful in the development processes for the GFDL CM4 and ESM4 models
- …
